
Designing	test	cases
What	to	test

Normal	day	to	day	tests
Behavior	tests
Other	tests

When	and	where	to	test
User	install	from	ecosystem
On	my	system,	a	Fedora	24+,	4-core,	8	threads
Travis-CI	and	Appveyor
Day	to	day	tests

The	tests
Simple	cases
The	MongoDB	Client,	Server,	Monitor	and	Socket	classes

Designing	test	cases
This	project	contains	a	lot	of	different	parts	to	focus	on.	Examples	are	Uri	testing,	reading,	writing,	states,	behavior	of	separate	classes	and	the
behavior	as	a	whole.	Not	all	functions	should	be	tested	when	a	user	is	installing	this	software,	because	several	tests	are	designed	to	follow	server
behavior	when	shutting	down	or	starting	up	while	reading	or	writing	amongst	other	things.	Some	of	the	edge	cases	might	fail	caused	by	race
conditions.	These	cases	might	never	be	encountered	under	normal	use	and	therefore	not	necessary	to	test.

What	to	test

Normal	day	to	day	tests

Creating	a	database	and	collection.
Using	find	to	read.
Using	run-command	to	write,	update	and	delete	etc.
Using	run-command	to	get	information.

Behavior	tests

Client	behavior	accessing	servers	defined	by	uri.
Driver	behavior	when	a	server	goes	down,	starts	up	or	changes	state.
States	where	a	driver	can	be	in.	These	are	held	in	the	Client	and	Server	objects.
Behavior	tests	are	done	against	servers	of	different	versions.

Other	tests

Independent	class	tests	like	on	Uri	and	logging.
Replica	server	tests.
Accounting	tests
Authentication	tests.

When	and	where	to	test

The	day	to	day	tests	are	the	tests	placed	in	directory	./t.	The	other	tests	are	found	in	directories	./xt.

User	install	from	ecosystem

Only	day	to	day	tests	are	done.

On	my	system,	a	Fedora	24+,	4-core,	8	threads

#designing-test-cases
#what-to-test
#normal-day-to-day-tests
#behavior-tests
#other-tests
#when-and-where-to-test
#user-install-from-ecosystem
#on-my-system-a-fedora-24-4-core-8-threads
#travis-ci-and-appveyor
#day-to-day-tests
#the-tests
#simple-cases
#the-mongodb-client-server-monitor-and-socket-classes


Mostly	day	to	day	tests	are	done.
From	time	to	time	other	tests.

Travis-CI	and	Appveyor

Travis-CI	and	Appveyor	(taken	up	later)	are	test	systems	where	the	software	is	installed	and	tests	once	a	git	push	is	executed.	Travis	is	on	a
Ubuntu	linux	and	the	Appveyor	is	for	windows	systems.

Day	to	day	tests	are	done.	This	will	set	the	outcome	of	the	whole	test.
A	select	set	of	other	tests	which	will	change	depending	on	the	history	(of	failures).	This	will	not	influence	the	test	result	when	one	of	the	tests
fail.	Its	purpose	is	mainly	to	see	what	happens	in	a	driver.

Day	to	day	tests

At	most	two	servers	are	started	for	different	versions	for	2.6.*	and	3.*

Simple	class	tests	of	classes	not	(too	much)	depending	on	each	other	like	Uri,	Logging	etc.
Simple	operations	tests	like	create	database	and	collection,	read	and	write	documents,	substitutions,	deletes	and	drop	collections	or
databases.
More	complex	operations	such	as	index	juggling,	mapping	and	information	gathering.

The	tests
Test	server	table.	In	this	table,	the	key	name	is	saying	something	about	the	server	used	in	the	tests.	This	key	is	mentioned	below	in	the	test
explanations	below.	There	are	also	key	combinations	such	as	s1/authenticate	which	means	that	the	particular	server	is	started	with	additional
options,	in	this	case	authentication	is	turned	on.

Config	key Server	version Server	type

s1 3.* mongod

Simple	cases

Uri	string	tests	in	xt/075-uri.t.	Can	be	placed	in	day	to	day	test	set.	No	server	needed.
	Server	names
	Uri	key	value	options
	Default	option	settings
	Username	and	password
	Reading	any	of	the	stored	values
	Failure	testing	on	faulty	uri	strings

The	MongoDB	Client,	Server,	Monitor	and	Socket	classes

These	classes	can	not	be	tested	separately	because	of	their	dependency	on	each	other	so	we	must	create	these	tests	in	such	a	way	that	all	can	be
tested	thoroughly.	Tests	are	not	for	day	to	dat	tests.

Client	object	interaction	tests	in	t/110-client.t.
Unknown	server	which	fails	DNS	lookup.

	server	can	not	be	selected
	server	state	is	SS-Unknown
	topology	is	TT-Unknown

Down	server,	no	connection.
	server	can	not	be	selected
	server	state	is	SS-Unknown
	topology	is	TT-Unknown

Standalone	server,	not	in	replicaset.	Use	config	s1.
	server	can	be	selected



	server	state	is	SS-Standalone
	topology	is	TT-Single

Two	standalone	servers.	Use	config	s1	and	s2.
	server	can	not	be	selected
	both	servers	have	state	SS-Standalone
	topology	is	TT-Unknown

Client/server	interaction	tests	in	t/111-client.t.
Standalone	server	brought	down	and	revived,	Client	object	must	follow.	Use	config	s1.

	current	status	and	topology	tested
	shutdown	server	and	restart
	restarted	server	status	and	topology	tested

Shutdown/restart	server	while	inserting	records.	Use	config	s1.
	start	inserting	records	in	a	thread
	shutdown/restart	server
	wait	for	recovery	and	resume	inserting

Client	authentication	tests	in	t/112-client.t.
Account	preparation	using	config	s1

	insert	a	new	user
Restart	to	authenticate	using	config	s1/authenticate

	authenticate	using	SCRAM-SHA1
	insert	records	in	users	database	is	ok
	insert	records	in	other	database	fails

Tested Test	Filename Test	Purpose

x 610-repl-start Replicaset	server	in	pre-init	state,	is	rejected	when	replicaSet	option	is	not	used.

x Replicaset	server	in	pre-init	state,	is	not	a	master	nor	secondary	server,	read	and	write	denied.

x Replicaset	pre-init	initialization	to	master	server	and	update	master	info

x 612-repl-start Convert	pre	init	replica	server	to	master

x 611-client Replicaserver	rejected	when	there	is	no	replica	option	in	uri

x Standalone	server	rejected	when	used	in	mix	with	replica	option	defined

x 612-repl-start Add	servers	to	replicaset

x 613-Client Replicaset	server	master	in	uri,	must	search	for	secondaries	and	add	them

x Replicaset	server	secondary	or	arbiter,	must	get	master	server	and	then	search	for	secondary	servers


