{&i? class MongoDB::Collection }

Operations on collections in a MongoDB database

Table of Contents

1 Synopsis

2 Readonly attributes
2.1 database

2.2 name

2.3 full-collection-name

2.4 read-concern
3 Methods

3.1 new

3.2 find

unit package MongoDB;

class Collection { ... }

Synopsis

Initialize

my MongoDB::Client $client .= new(:uri(mongodb://"));

my MongoDB::Database $database = $client.database('contacts’);

my MongoDB::Collection $collection = $database.collection(perl_users');

Find everything
for $collection.find -> BSON::Document $document {

$document.perl.say;

}

Or narrow down using conditions.

my MongoDB::Cursor $cursor = $collection.find(
:$criteria(nick => 'camelia’), $number-to-return(1)

i

$cursor.fetch.perl.say;

Class to help accessing and manipulating collections in MongoDB databases.

Readonly attributes

database

has DatabaseType $.database;

Get the database object of this collection. It is set by MongoDB::Database when a collection
object is created.

name

has Str $.name;

Get the name of the current collection. It is set by MongoDB::Database when a collection object
is created.

full-collection-name

has Str $.full-collection-name;

Get the full representation of this collection. This is a string composed of the database name and
collection name separated by a dot. E.g. person.address means collection address in database
person.

read-concern

has BSON::Document $.read-concern;

The read-concern is a structure to have some control over the read operations to which server the
operations are directed to. Default is taken from the database. The structure will be explained
elsewhere.

Methods

new

submethod BUILD (

DatabaseType:D :$database, Str:D :$name, BSON::Document :$read-concern

)

Example

my MongoDB::Database $database .= new(:$client, :name<contacts>);

my MongoDB::Collection $collection .= new(:$database, :name<perl_users>);

Creates a new Collection object. However, it is better to call collection on the database or client
object as shown here;

my MongoDB::Database $database = $client.database('contacts');
my MongoDB::Collection $collection = $database.collection(perl_users');

my MongoDB::Collection $collection = $client.collection('contacts.perl_users');
my MongoDB::Database $database = $collection.database;

find

multi method find (
List :$criteria where all() ~~ Pair = (),
List :$projection where all() ~~ Pair = (),
Int :$number-to-skip = 0, Int :$number-to-return = 0,
QueryFindFlags : = Array[QueryFindFlags].new,
List :$read-concern
--> MongoDB::Cursor

Call method find using lists of pairs. An example;

my MongoDB::Cursor $c = $collection.find(
:criteria(nick => 'MARTIMM?,), :projection(_id => 0,)
);

Mind the comma's! When only one pair is entered in the list, it is coerced to a pair instead of a list
of pairs.

multi method find (
BSON::Document :$criteria = BSON::Document.new,
BSON::Document :$projection?,
Int :$number-to-skip = 0, Int :$number-to-return = 0,
QueryFindFlags : = Array[QueryFindFlags].new,
BSON::Document :$read-concern
--> MongoDB::Cursor

Call method find using the BSON::Document class.

my MongoDB::Cursor $c = $collection.find(
:criteria(BSON::Document.new(nick => 'MARTIMM,)),

:projection(BSON::Document.new(_id => 0,))

);

Find documents in the database. When $criteria is not provided all documents are returned.
There are 2 options and some flags to affect the search. $projection is used to select the fields to
be returned. It looks like (field => 1,) or (field => 0,). When 1 the field is included, when 0 it will be
excluded. The _id field is always included unless explicitly excluded like (_id => 0,). The method
returns a MongoDB::Cursor.

¢ :number-to-skip. Sets the number of documents to omit - starting from the first document in
the resulting dataset - when returning the result of the query.

¢ :number-to-return. Limits the number of documents in the first OP_REPLY message to the
query. However, the database will still establish a cursor and return the cursorID to the
client if there are more results than number-to-return. If number-to-return is 0, the db will use
the default return size. If the number is negative, then the database will return that number
and close the cursor. No further results for that query can be fetched. If number-to-return is 1
the server will treat it as -1 (closing the cursor automatically).

e :flags. This is an array variable which is filled with QueryFindFlags values defined in
MongoDB. An example;

my $c = $collection.find(
:flags(Array[QueryFindFlags].new(C-QF-SLAVEOK))

);

my QueryFindFlags = C-QF-SLAVEOK, C-QF-TAILABLECURSOR;
my $c = $collection.find(:);

First example looks complex but that might change in the future, this is the situation at
2016-11-9 with rakudo version 2016.10-249-gb84158c built on MoarVM version 2016.10-
37-gf769569 implementing Perl 6.c.

o C-QF-TAILABLECURSOR: corresponds to TailableCursor. Tailable means cursor is
not closed when the last data is retrieved. Rather, the cursor marks the final object's
position. You can resume using the cursor later, from where it was located, if more
data were received. Like any 'latent cursor', the cursor may become invalid at some
point (CursorNotFound) for example if the final object it references were deleted.

o C-QF-SLAVEOK: corresponds to SlaveOk.Allow query of replica slave. Normally
these return an error except for namespace 'local'.

o C-QF-OPLOGREPLAY: corresponds to OplogReplay. Internal replication use only -
driver should not set.

o C-QF-NOCURSORTIMOUT: corresponds to NoCursorTimeout. The server normally
times out idle cursors after an inactivity period (10 minutes) to prevent excess memory
use. Set this option to prevent that. When used, the cursor must be removed explicitly
using $cursor.kill().

o C-QF-AWAITDATA: corresponds to AwaitData. Use with TailableCursor. If we are at
the end of the data, block for a while rather than returning no data. After a timeout
period, we do return as normal.

o C-QF-EXHAUST: corresponds to Exhaust. Stream the data down full blast in multiple
'more' packages, on the assumption that the client will fully read all data queried.
Faster when you are pulling a lot of data and know you want to pull it all down. Note:
the client is not allowed to not read all the data unless it closes the connection.

o C-QF-PORTALIL: corresponds to Partial. Get partial results from a mongos if some
shards are down (instead of throwing an error)

Generated using Pod::Render, Pod::To::HTML, ©Google prettify]

	class MongoDB::Collection
	Table of Contents

	Synopsis
	Readonly attributes
	database
	name
	full-collection-name
	read-concern

	Methods
	new
	find

