

An Introduction To

Db::Documentum

M. Scott Roth

October 2000

Version 1.1

© 2000 M. Scott Roth

An Introduction to Db::Documentum, Version 1.1 Page i

Contents

1 INTRODUCTION... 1

1.1 REQUIREMENTS.. 1
1.2 CONVENTIONS.. 2
1.3 INSTALLATION ... 2
1.4 USE .. 3

2 DB::DOCUMENTUM MODULE OVERVIEW ... 4

2.1 DMAPIEXEC().. 4
2.2 DMAPIGET().. 5
2.3 DMAPISET() .. 6
2.4 DMAPIINIT() AND DMAPIDEINIT() ... 7

3 DB::DOCUMENTUM::TOOLS MODULE OVERVIEW... 8

3.1 DM_LASTERROR() ... 8
3.2 DM_CONNECT() ... 9
3.3 DM_CREATETYPE().. 10
3.4 DM_CREATEOBJECT() .. 10
3.5 DM_CREATEPATH() ... 11
3.6 DM_LOCATESERVER() ... 12

4 REAL-WORLD EXAMPLES ... 13

4.1 INBOX TICKLER ... 13
4.2 IDQL... 14
4.3 CONFIG SCRIPT .. 19
4.4 SERIAL PORT LISTENER ... 24
4.5 WEB ACCESS ... 30

5 CLOSING .. 38

An Introduction to Db::Documentum, Version 1.1 Page ii

Figures

FIGURE 1 - SAMPLE TICKLER.PL OUTPUT. .. 14
FIGURE 2 - A SAMPLE IDQL.PL SESSION.. 18
FIGURE 3 - OUTPUT FROM THE CONFIG.PL SCRIPT. ... 23
FIGURE 4 - OUTPUT FROM SERV.PL SCRIPT... 29
FIGURE 5 - SAMPLE LISTENER.PL OUTPUT. ... 29
FIGURE 6 - CABINET/FOLDER HIERARCHY IN WORKSPACE. ... 30
FIGURE 7 - DMQUERY.HTML... 35
FIGURE 8 - QUERY RESULTS FOR 'INFORMATION.'... 36
FIGURE 9 - GETFILE.PL. .. 36

Revisions

1.1 October 2000 Updated for Db::Documentum 1.4. Editorial improvements.
1.0 July 2000 Initial Release

An Introduction to Db::Documentum, Version 1.1 Page 1

1 Introduction
The Db::Documentum module is an interface between Perl and Documentum’s Enterprise
Document Management System (EDMS). It provides access to Documentum’s API from Perl,
thus allowing you to program for Documentum with Perl.

Documentum is an industry leader in enterprise document management systems. Its server
contains an extensive API (~148 methods) that provides access to all areas of the EDMS. Perl is
an excellent choice for programming in Documentum. It has all the capabilities of a
sophisticated programming language (I/O, logic, extensibility--not to mention regular
expressions) in addition to the freedom and flexibility you expect from a scripting language. The
marriage of Perl and Documentum seems natural and exciting to me. I think you will agree.

This tutorial gives you an overview of the Db::Documentum module: how to install it, what it
contains, and how to use it. It presents a number of real-world examples to demonstrate how
easily you can program Documentum in Perl and how powerful the combination can be.
Note: This tutorial and its examples were written and tested on a PC running Microsoft
Windows NT 4 and ActiveState Perl 5.6 (build 616). Db::Documentum has been successfully run
on other platforms and under other software configurations; see the documentation for details.
Although nearly everything discussed here is applicable as-is, in UNIX there are a few
exceptions. I will point them out along the way.

1.1 Requirements
To implement the examples discussed in this tutorial:

• You must have access to a working EDMS 98 or 4i1 Docbase. You will need sufficient
privileges to create types, cabinets, and folders.

• You must have either the Documentum WorkSpace or 4i Desktop Client installed on
your workstation.

• Depending on how you choose to install the Db::Documentum module, you may need a
C/C++ compiler. If you choose the traditional method, you will need the compiler. If
you choose the PPM method you will not.

1 Documentum 4.1.4 or earlier.

An Introduction to Db::Documentum, Version 1.1 Page 2

• You will need the Db::Documentum module (version 1.4 or later).
• You will need a good working knowledge of Perl and Documentum’s API.

1.2 Conventions

The following typographic conventions are used in this tutorial:

• Courier Fixed Width denotes Perl code, variable names, file names, OS
commands, and other programmatic elements.

• Italics denotes Db::Documentum function names and URLs.
• Courier Fixed Width Italics denotes subroutine and Documentum method

names.
• Arial denotes screen elements.

I use ">" to indicate the command line prompt.

1.3 Installation

If you are using Microsoft Windows NT, you have two options for installation: the traditional
method or the PPM method. If you are using UNIX, use the traditional method.

1.3.1 The Traditional Method
Download the module from the CPAN (http://www.perl.com/CPAN-local/modules/by-
module/Db/), unpack it, and carefully read the README and the Makefile.PL files.
Makefile.PL requires some tweaking to ensure the DMCL libraries and header files are in the
proper locations on your hard drive and that those locations are communicated to make.
Makefile.PL details all of the necessary files and paths. After tweaking, it's business as usual
for the install:

>perl Makefile.PL
>nmake2
>nmake test
>nmake install

1.3.2 The PPM Method

If you are installing Db::Documentum on Windows NT and don’t have a C/C++ compiler, you
can download compiled versions of the module from: http://www.erols.com/theroths/
perl_stuff.html. After downloading and unpacking the archive, install it by typing:

>PPM install Db-Documentum.ppd

2 In UNIX, this command is simply make.

An Introduction to Db::Documentum, Version 1.1 Page 3

1.4 Use

To use Db::Documentum and Db::Documentum::Tools, just use them in your Perl script.

#!/usr/local/bin/perl

use Db::Documentum qw (:all);
use Db::Documentum::Tools qw (:all);
.
.
.

Because the modules do not automatically import their functions into Perl’s namespace, you
must declare which functions in Db::Documentum and Db::Documentum::Tools you want to
use. The keyword :all imports all of the functions. See the modules’ source code for more
details.

That’s all there is to it!

An Introduction to Db::Documentum, Version 1.1 Page 4

2 Db::Documentum Module Overview
Documentum really has only three API functions: dmAPIExec(), dmAPIGet(), and dmAPISet().
These three provide access to all of the methods of the EDM Server and WorkSpace client.
Through them, Perl interfaces with Documentum. This section discusses the three functions,
what they do, and how to use them.

2.1 dmAPIExec()

The dmAPIExec() function executes EDM Server and Workspace methods. dmAPIExec()
returns TRUE (1) or FALSE (0) based upon the success or failure of the method it executes.

2.1.1 Syntax

$api_stat = dmAPIExec("<method name>,<session id>,<method arguments>");

where <method name> is a Documentum method name, <session id> is a Documentum
session identifier, and <method arguments> are arguments required by <method
name>.3

2.1.2 Examples

dmAPIExec("close,c,$col_id");4

closes the open collection identified by $col_id.

$api_stat = dmAPIExec("execquery,c,’F’,select * from dm_document where owner_name =
user");

runs a DQL query against the Docbase. Remember, dmAPIExec() returns only TRUE or FALSE

3 Consult the Documentum Server Reference Manual for a complete list of all methods and their arguments.
4 You will often see the Documentum shorthand "c" used for the current session ID.

An Introduction to Db::Documentum, Version 1.1 Page 5

and not the result of the query. To obtain the result of the query, you must use a dmAPIGet()
method as discussed below.

2.2 dmAPIGet()

The dmAPIGet() function retrieves information from the EDM Server. dmAPIGet() returns a
scalar containing the information that was requested.

2.2.1 Syntax

$rv = dmAPIGet("<method name>,<session id>,<method arguments >");

where <method name> is a Documentum method name, <session id> is a Documentum
session identifier, and <method arguments> are arguments required by <method name>.

2.2.2 Examples

$sessionID = dmAPIGet(“connect,$docbase,$user,$password”);

logs $user into $docbase, and returns $sessionID.

$last_col_id = dmAPIGet(“getlastcoll,c”);

returns the collection ID for the last executed query. Remember, the dmAPIGet() function
returns a scalar, not TRUE or FALSE.

Using dmAPIExec() and dmAPIGet() you can query the Docbase and print the names of the
documents you own.

do query
$api_stat = dmAPIExec("execquery,c,’F’,select * from dm_document where owner_name =
user");

if query successful
if ($api_stat) {

$col_id = dmAPIGet(“getlastcoll,c”);

 # if collection id obtained

if ($col_id) {

 # iterate over collection getting attrs and printing

while (dmAPIExec(“next,c,$col_id”)) {
$title = dmAPIGet(“get,c,$col_id,title”);
$obj_name = dmAPIGet(“get,c,$col_id,object_name”);
$owner = dmAPIGet(“get,c,$col_id,owner_name”);
print “$title ($obj_name) is owned by $owner\n”;

}
}

 # it is VERY important to close collections
dmAPIExec(“close,c,$col_id”);

}

An Introduction to Db::Documentum, Version 1.1 Page 6

2.3 dmAPISet()

The dmAPISet() function sets the value of an attribute on an object. dmAPISet() returns TRUE or
FALSE based upon the success or failure of setting the indicated value.

2.3.1 Syntax

$api_stat = dmAPISet("<method name>,<session id>,<method arguments >","<value>");

where <method name> is a Documentum method name, <session id> is a Documentum
session identifier, <method arguments> are arguments required by <method name>, and
<value> is the value being set by <method name>. Note: unlike the other API functions,
this function's signature contains two scalars separated by a comma.

2.3.2 Examples

$api_stat = dmAPISet("set,c,$obj_id,title",$title);

sets the attribute title to the value contained in $title for the object identified by
$obj_id.

$api_stat = dmAPISet("append,c,$obj_id,my_date,yyyymmdd","19890805");

appends ‘19890805’ to the repeating attribute, my_date, of the object identified by $obj_id
(using a custom date format).

Using dmAPIExec(), dmAPIGet(), and dmAPISet() you can search the Docbase for the
documents you own and touch them.

assume $now = today's date
do query
$api_stat = dmAPIExec("execquery,c,'F',select * from dm_document where owner_name =
user");

if query successful
if ($api_stat) {
 $col_id = dmAPIGet("getlastcoll,c");

 # if collection ID obtained
 if ($col_id) {

 # iterate over collection getting attrs, setting date_modified,
 # and printing
 while (dmAPIExec("next,c,$col_id")) {
 $title = dmAPIGet("get,c,$col_id,title");
 $obj_name = dmAPIGet("get,c,$col_id,object_name");
 $obj_id = dmAPIGet("get,c,$col_id,r_object_id");
 dmAPISet("set,c,$col_id,date_modified","$now,'dd/mm/yyyy'");

An Introduction to Db::Documentum, Version 1.1 Page 7

 # remember to save the changes!
 dmAPIExec("save,c,$obj_id");
 print "$title ($obj_name) touched\n";
 }
 }
 # it is VERY important to close collections
 dmAPIExec("close,c,$col_id");
}

2.4 dmAPIInit() and dmAPIDeInit()

Two other Documentum API functions are used in Db::Documentum: dmAPIInit() and
dmAPIDeInit(). As their names imply, they initialize and deinitialize the API interface. These
functions require no parameters and return TRUE or FALSE based upon their success or failure.
The Db::Documentum module calls these functions automatically for you when your program
begins and ends. You need not call them directly.

An Introduction to Db::Documentum, Version 1.1 Page 8

3 Db::Documentum::Tools Module Overview
Db::Documentum::Tools is a companion module to Db::Documentum. It contains subroutines
for many common Documentum tasks.5. These tasks can be accomplished through the API--
some easier than others--but encapsulating them in subroutines relieves you of unnecessary and
tedious programming and helps to ensure consistent reuse.

This section discusses each of the module's subroutines, what they do, and how to use them. I
encourage you to examine the code for the Db::Documentum::Tools module itself for additional
insights.

3.1 dm_LastError()

dm_LastError() returns a scalar containing error messages for a particular session.

3.1.1 Syntax

$errors = dm_LastError(<session id>,<level>,<number>);

All of dm_LastError()'s arguments are optional. However, you will almost always call it with, at
least, <session id>. The only exception is when you retrieve errors for a failed logon
attempt and no <session id> exists. With no <session id> defined, dm_LastError()
uses the apisession session ID. The apisession identifies the session created by
dmAPIInit() when it initially connects to the server.

The arguments operate as follows:

<session id> = the session ID of the messages to return. If not present,
apisession assumed.

<level> = the level of messages to return. This argument returns all messages equal to
or less than the level setting. If not present, level 3 is assumed.

1 = Informational Messages

5 There are additional subroutines in the Db::Documentum::Tools module that are not discussed here.

An Introduction to Db::Documentum, Version 1.1 Page 9

2 = Warning Messages
3 = Error Messages
4 = Fatal Error Messages.

<number> = the number of messages to return. The specified number of messages will
be returned as a scalar delimited by “\n.” If not present, all messages are returned.

3.1.2 Examples

$errors = dm_LastError();

returns all level 3 error messages for the apisession session (i.e., failed logon).

$info = dm_ LastError($sessionID,1);

returns all level 1 messages to $info.

print dm_ LastError($sessionID,3,1);

prints the last level 3 error message.

3.2 dm_Connect()

dm_Connect() logs a user onto the Docbase and returns the session ID if successful, or undef
on failure.

3.2.1 Syntax

$sessionID = dm_Connect(<docbase>,<username>,<password>,<domain>,<user_arg>);

Depending upon which OS you use and how you authenticate users, the dm_Connect() syntax
differs slightly. All OSs require the first three arguments: <docbase>, <username>, and
<password>. <domain> is optional. If you use an authentication method other than that
provided by Documentum, you can pass an additional argument, <user_arg>, to your
authentication program. See the Documentum Server Reference Manual and the
Db::Documentum::Tools source code for details and examples.6

3.2.2 Examples

assume $DOCBASE, $USER, $PASSWD defined previously
$sessionID = dm_Connect($DOCBASE,$USER,$PASSWD);
die dm_LastError() unless $sessionID;

attempts to logon to $DOCBASE as $USER with password $PASSWD and returns the session ID

6 The Db::Documentum::Tools module contains subroutines and information to assist users of Kerberos authentication.

An Introduction to Db::Documentum, Version 1.1 Page 10

to $sessionID. If no session ID is returned (i.e., logon failed), an error message is printed
and the script dies.

3.3 dm_CreateType()

New object types are usually created in a Docbase using DQL because the Documentum API
does not include a method to perform this task. Have no fear! Db::Documentum::Tools
provides an easy-to-use subroutine for this job: dm_CreateType().

3.3.1 Syntax

$api_stat = dm_CreateType(<object name>,<super type>,<attribute hash>);

where <object name> is any valid object name that you desire, <super type> is any
Documentum object type that you can subtype, and <attribute hash> is an optional list of
custom attributes. The <attribute hash> is a Perl hash where the attribute names are used
as the hash keys, and the database field definitions as their values. The function can be called
without a hash defined, in which case no additional attributes are added to the new object type.
The dm_CreateType() returns TRUE or FALSE based upon its success or failure.

3.3.2 Examples

$api_stat = dm_CreateType ("my_document","dm_document");

creates an object type called my_document that is a subtype of dm_document with no
customized attributes.

%ATTRS = (cat_id => 'CHAR(16)',
 locale => 'CHAR(255) REPEATING');
$api_stat = dm_CreateType ("your_document","my_document",%ATTRS);

creates an object type called your_document that is a subtype of my_document and
contains two additional attributes: cat_id and locale.

3.4 dm_CreateObject()

dm_CreateObject() allows you to easily create a new instance of an existing object type, and
optionally assign attribute values to it.

3.4.1 Syntax

$obj_id = dm_CreateObject (<object type>,<attribute hash>);

where <object type> is any valid object type that you can instantiate and <attribute
hash> is an optional list of custom attributes and their values. The <attribute hash> is a
Perl hash where the attribute names are used as the hash keys, and the attribute values as the hash

An Introduction to Db::Documentum, Version 1.1 Page 11

values. In the case of repeating attributes, the hash values must be delimited by
$Db::Documentum::Tools::Delimiter. (The subroutine parses the hash values
looking for this value. If it is found, the hash value is split on
$Db::Documentum::Tools::Delimiter and appended() to the repeating attribute.)
The function can also be called without the hash defined, in which case no attributes are set.
dm_CreateObject() returns the newly created object’s r_object_id upon its success, or
undef on failure.

3.4.2 Examples

get the repeating attr delimiter
$delim = $Db::Documentum::Tools::Delimiter;

%ATTRS = (object_name => 'test_doc1',
 title => 'My Test Doc 1',
 keywords => 'Scott' . $delim . 'Test Doc' . $delim .
 'Db-Documentum',
 r_version_label => 'TEST');

$obj_id = dm_CreateObject ("dm_document",%ATTRS);
$api_stat = dmAPIExec("save,$sessionID,$obj_id");

creates and saves a new document in the Docbase with attribute values defined in %ATTRS.
Note: dm_CreateObject() does not save the object. You must execute the save() method
separately.

$obj_id = dm_CreateObject ("dm_document");
$api_stat = dmAPIExec("save,$sessionID,$obj_id");

creates and saves a document in the Docbase with no attribute values assigned.

3.5 dm_CreatePath()

dm_CreatePath() allows you to easily create folder hierarchies in a Docbase. dm_CreatePath()
returns the r_object_id of the newly created folder upon success, or undef on failure.

3.5.1 Syntax

$folder_id = dm_CreatePath(<path>);

where <path> is a fully qualified path starting at the Docbase root.

3.5.2 Examples

$folder_id = dm_CreatePath('/Temp/Db-Documentum/Test');

creates the folder Test and returns its r_object_id. If /Temp and /Temp/Db-
Documentum do not exist, they are also created.

An Introduction to Db::Documentum, Version 1.1 Page 12

@years = ('/Data/Years/1998','/Data/Years/1999',
 '/Data/Years/2000','/Data/Years/2001');
foreach $year (@years) {
 die dm_LastError($sessionID) unless dm_CreatePath($year);
}

creates the folder hierarchy contained in @years.

3.6 dm_LocateServer()

The dm_LocateServer() subroutine returns a scalar containing the hostname of the server running
the Docbase named in its argument. If a server cannot be found for the Docbase, the subroutine
returns undef.

3.6.1 Syntax

$hostname = dm_LocateServer(<docbase name>);

where <docbase name> is the name of the Docbase.

3.6.2 Examples

print "Enter a Docbase name: ";
chomp ($docbase = <STDIN>);
print "$docbase hosted by server " . dm_LocateServer($docbase) . "\n";

prints the name of the Docbase entered at the prompt and the name of the server hosting it.

An Introduction to Db::Documentum, Version 1.1 Page 13

4 Real-World Examples
In this section, I present five real-world examples of programming for Documentum with Perl.
The first example is a straightforward script that checks a user’s inbox for items. The second is a
Perl implementation of Documentum’s Interactive DQL Editor (IDQL). (As of version 1.4, this
script can be found in the /etc directory of the Db::Documentum distribution.) The last three
examples are related in that they implement a system for capturing, searching, and viewing
documents in the Docbase. The first of these examples is a Docbase configuration script. The
second captures news stories from a wire service (e.g., AP), and imports them into the Docbase.
The last example is a set of scripts that provide web-based access to the news stories in the
Docbase.

4.1 InBox Tickler

This short, but useful script demonstrates how easy programming for Documentum with Perl
really is. It is a simple tickler to alert users if they have any queued items in their inboxes.

4.1.1 tickler.pl
1 #!/usr/local/bin/perl
2 # tickler.pl
3 # (c) 2000 MS Roth
4
5 use Db::Documentum qw (:all);
6 use Db::Documentum::Tools qw (dm_Connect dm_LastError);
7
8 print "\nDb::Documentum Inbox Tickler\n";
9 print "----------------------------\n";
10
11 # define $DOCBASE, $USER, $PASSWD
12 # logon or die
13 $SESSION_ID = dm_Connect($DOCBASE,$USER,$PASSWD);
14 die "No session ID obtained.\nDocumentum Error was: " .
15 dm_LastError() unless $SESSION_ID;
16
17 # define SQL for counting
18 $DQL = "SELECT COUNT(*) AS cnt FROM dmi_queue_item WHERE name = user";
19
20 # do duery
21 $col_id = dmAPIGet("query,$SESSION_ID,$DQL");
22

An Introduction to Db::Documentum, Version 1.1 Page 14

23 # if query successful
24 if ($col_id) {
25 # loop through collection (of 1) and print count
26 while (dmAPIExec("next,$SESSION_ID,$col_id")) {
27 $count = dmAPIGet("get,$SESSION_ID,$col_id,cnt");
28 }
29 dmAPIExec("close,$SESSION_ID,$col_id");
30 print "You have $count items in your inbox.\n";
31 }
32 # if no collection, error
33 else {
34 print "\nNo collection ID obtained.\n";
35 print "Documentum Error was: " . dm_LastError($SESSION_ID);
36 }
37
38 dmAPIExec("disconnect,$SESSION_ID");
39
40 # __EOF__

4.1.2 Discussion

The beauty of scripts like tickler.pl is that virtually no effort was invested in their
production. They can be cobbled together quickly, used once, and discarded with no loss of
investment. Or, they can be used and reused with great utility. In addition, because
tickler.pl is a script (and not a compiled program), it can be changed tomorrow or next
week with little effort. Isn't Perl great?

Though this script is pretty simple, it does contain a few points I want to highlight. First, the
script does not define $DOCBASE, $USER, and $PASSWD. There are a number of ways to
obtain the $DOCBASE, $USER, and $PASSWD if you don't want to hardcode them in the script.
You could prompt the user to enter them (as I will demonstrate later), read them from a file,
glean them from the OS, or pass them on the command line. I leave this as an exercise for you.

The second point I want to highlight is the loop between lines 26 - 28. This loop accesses the
data in the collection returned by the query on line 21. This loop demonstrates the basic
construct for accessing data in a collection. You must execute at least one next() method on a
collection to obtain any data from it, and as noted earlier, always close() your collections. In
between, you can get() any of the attributes you named in your query.

4.1.3 Output

When tickler.pl is run, the output looks like this:

Db::Documentum Inbox Tickler

You have 13 items in your inbox.

Figure 1 - Sample tickler.pl output.

4.2 IDQL

As I’m sure you are aware, the IDQL editor is a very handy Documentum tool. As a test of my

An Introduction to Db::Documentum, Version 1.1 Page 15

Documentum API programming skills, and to exercise the Db::Documentum module, I wrote the
following implementation of the IDQL editor. Since the IDQL editor is only part of the Docbase
Administrator in 4i, a local implementation like this one is very handy.

4.2.1 idql.pl

1 #!/usr/local/bin/perl
2 # idql.pl
3 # (c) 2000 MS Roth
4
5 use Db::Documentum qw(:all);
6 use Db::Documentum::Tools qw (:all);
7 use Term::ReadKey;
8
9 logon();
10
11 # main loop
12 $cmd_counter = 1;
13 while (1) {
14 print "$cmd_counter> ";
15 chomp($cmd = <STDIN>);
16 if ($cmd =~ /go$/i) {
17 do_DQL($DQL);
18 $DQL = "";
19 $cmd_counter = 0;
20 } elsif ($cmd =~ /quit$/i) {
21 do_Quit();
22 } else {
23 $DQL .= " $cmd";
24 }
25 $cmd_counter++;
26 }
27
28 sub logon {
29 print "\n" x 10;
30 print "Db::Documentum Interactive Document Query Language Editor
 (IDQL)\n";
31 print "--
 \n";
32 print "Enter Docbase Name: ";
33 chomp ($DOCBASE = <STDIN>);
34 print "Enter User Name: ";
35 chomp ($USERNAME = <STDIN>);
36 print "Enter Password: ";
37 # turn off display
38 ReadMode 'noecho';
39 chomp ($PASSWD = <STDIN>);
40 # turn display back on
41 ReadMode 'normal';
42
43 # login
44 $SESSION = dm_Connect($DOCBASE,$USERNAME,$PASSWD);
45 die dm_LastError() unless $SESSION;
46 my $host = dm_LocateServer($DOCBASE);
47 print "\nLogon to $DOCBASE\@$host successful. Type 'quit' to quit.\n\n";
48 }
49
50 sub do_DQL {
51 my $dql = shift;

An Introduction to Db::Documentum, Version 1.1 Page 16

52
53 print "\n\n";
54
55 # do sql and print results
56 $api_stat = dmAPIExec("execquery,$SESSION,F,$dql");
57
58 if ($api_stat) {
59 $col_id = dmAPIGet("getlastcoll,$SESSION");
60
61 # get _count
62 $attr_count = dmAPIGet("get,$SESSION,$col_id,_count");
63
64 if ($attr_count > 0) {
65 # get _names and _lengths
66 @attr_names = ();
67 @attr_lengths = ();
68
69 for ($i=0; $i<$attr_count; $i++) {
70 push(@attr_names,dmAPIGet("get,$SESSION,$col_id,_names[$i]"));
71 push(@attr_lengths,
 dmAPIGet("get,$SESSION,$col_id,_lengths[$i]"));
72 }
73
74 # print attr names
75 for ($i=0; $i<$attr_count; $i++) {
76 print $attr_names[$i];
77 print " " x ($attr_lengths[$i] -
 length($attr_names[$i]) . " ");
78 }
79 print "\n";
80
81 # print underbars for attr names
82 for ($i=0; $i<$attr_count; $i++) {
83 if ($attr_lengths[$i] == 0)
84 { $attr_lengths[$i] = 16; }
85 print "-" x $attr_lengths[$i] . " ";
86 }
87 print "\n";
88
89 # print attr values
90 $row_counter = 0;
91 while (dmAPIExec("next,$SESSION,$col_id")) {
92 my $attr_counter = 0;
93 foreach my $name (@attr_names) {
94 my $value = dmAPIGet("get,$SESSION,$col_id,$name");
95 print $value;
96 print " " x ($attr_lengths[$attr_counter] -
 length($value)) . " ";
97 $attr_counter++;
98 }
99 print "\n";
100 $row_counter++;
101 }
102 print "\n[$row_counter row(s) affected]\n\n";
103 dmAPIExec("close,$SESSION,$col_id");
104 }
105 }
106 print dm_LastError($SESSION,3,'all');
107 }
108
109 sub do_Quit {

An Introduction to Db::Documentum, Version 1.1 Page 17

110 print "\n\nQuitting!\n\n";
111 dmAPIExec("disconnect,$SESSION");
112 exit;
113 }
114
115 # __EOF__

4.2.2 Discussion

The Term::ReadKey module on line 7 is used to hide the password when it is entered later on
line 39. If you don’t have this module installed, you can easily get it from the CPAN, or just
comment-out this line if you prefer not to use it at all; it has no impact on the operation of the
script. Note that if you do comment-out line 7, you must also comment-out lines 38 and 41
where the module is actually used.

The main loop in this script is an infinite while loop containing three conditional statements.
The first condition tests whether the input from STDIN contains "go" (Remember, "go" is the
signal to IDQL to execute the entered syntax.). If it does, then do_DQL() is called with the
$DQL query string. The second condition tests whether the input contains "quit"’ If it does,
do_Quit() is called to terminate the script. The third condition is simply the default, and
concatenates STDIN to the existing $DQL variable to build the query statement.

The heart of this script is the do_DQL() subroutine on lines 50 - 107. Notice that I used the
execquery() method with the read_query flag set to FALSE to execute the query (line
56). Because I can't anticipate what kind of DQL statement I will receive in $DQL, this allows
me the most flexibility in processing the statement. For more details regarding execquery()
and the use of the read_query flag, see the Documentum Server Reference Guide.

Since I don't know what to expect in the $DQL variable, I certainly don't know what to expect in
the collection the execquery() returns. Therefore, I must first interrogate the collection
object and extract its column names before I can print the results. Line 62 retrieves the number
of columns contained in the collection, and line 64 checks that the number of columns is greater
than 0. If it's not, then an error occurred. Lines 69 - 72 iterate over the attributes of the
collection object and retrieve the names and widths of its columns. Note that these are metadata
about the collection--I haven't yet started to process the actual contents of the collection. Lines
74 - 87 print the names of the columns spaced appropriately for their widths. Finally, lines 89 -
101 iterate over the collection, retrieve the query results, and print them.

This was a fun and eye-opening exercise. I hope you learned something from it. Interrogating
the collection object is insightful and has lots of application. Check the Documentum Server
Reference Manual for more information regarding a collection objects's other attributes.

4.2.3 Output

Here is output from a sample session using idql.pl (edited slightly to conserve space):

Db::Documentum Interactive Document Query Language Editor (IDQL)
--
Enter Docbase Name: Docbase-1

An Introduction to Db::Documentum, Version 1.1 Page 18

Enter User Name: msroth
Enter Password:

Logon to Docbase-1@Docpage_serv successful. Type 'quit' to quit.

1> select object_name,title from dm_document where owner_name =
'msroth';
2> go

object_name

 title

--
--
--- -------------
--
--

getfile.pl

 Intro to DB::Documentum - getfile.pl

show_files.pl

 Intro to Db::Documentum - show_files.pl

dmquery.html

 Intro to Db::Documentum - dmQuery.html

intro-db-dctm.doc

 Intro to Db::Documentum

tickler.pl

 Intro to Db::Documentum - tickler.pl

[5 row(s) affected]

1>_

Figure 2 - A sample idql.pl session.

An Introduction to Db::Documentum, Version 1.1 Page 19

4.3 Config Script

The original impetus for Db::Documentum was to perform repeatable, customized Documentum
installations around the country. These custom installations required creating new filestores (for
distributed content storage), users, ACLS, cabinet/folder hierarchies, methods and procedures,
and registering external database tables. Doing this once was tedious; doing it multiple times
was out of the question (Remember, this was in the days before the DocApp.). What I needed
was a way to automate installations to the point that I could e-mail a script to a system
administrator and have him run it.

I found that Perl was the perfect tool for this. It had all the necessary I/O, OS, and logic
capabilities to create a robust installation process; it was easy to modify; and it was cross-
platform. All it needed was an interface with Documentum. Thus, Db::Documentum was born7.

The following configuration script isn't nearly as involved as that mentioned above, but it will
give you a taste of how easy it is to configure a Docbase using Perl. This script creates a new
object type (news_wire_type), whose storage is separate from that of the rest of the
Docbase; a new user (listener); and a cabinet/folder hierarchy. The configurations made by
this scrip t are used by the remaining examples in this tutorial.

4.3.1 config.pl

1 #!/usr/local/bin/perl
2 # config.pl
3 # (c) 2000 MS Roth
4
5 $| = 1;
6 use Db::Documentum qw(:all);
7 use Db::Documentum::Tools qw(:all);
8 use Term::ReadKey;
9
10 $BASE_CABINET = 'Data';
11 $CONTENT_DIR = "c:\\documentum\\data\\news";
12
13 @FOLDERS = ("$BASE_CABINET/News_Services",
14 "$BASE_CABINET/News_Services/AP",
15 "$BASE_CABINET/News_Services/AP/1999",
16 "$BASE_CABINET/News_Services/AP/2000",
17 "$BASE_CABINET/News_Services/Reuters",
18 "$BASE_CABINET/News_Services/Reuters/1999",
19 "$BASE_CABINET/News_Services/Reuters/2000");
20
21 %USERS = ('listener' => {'client_capability' => '2',
22 'default_folder' =>
 "/$BASE_CABINET/News_Services",
23 'description' => 'News Listener',
24 'home_docbase' => 'Docbase-1',
25 'user_group_name' => 'admingroup',
26 'user_os_name' => 'listener',

7 After completing these installations, I began to investigate releasing my Perl-Documentum integration to the CPAN. I
discovered that only weeks before, Brian Spolarich had published the Db::Documentum module. After examining it, I found that
we both came to essentially identical solutions--except that his module was UNIX-based and mine was NT-based. I contacted
Brain and we collaborated on versions 1.1, 1.2, and 1.3 of the module. Since 1.4, I have been the sole maintainer.

An Introduction to Db::Documentum, Version 1.1 Page 20

27 'user_address' => 'listener@Docbase-1',
28 'user_privileges' => '3',
29 'user_state' => '0'});
30
31 %TYPES = ('news_wire_type' => {'news_agency' => 'CHAR(32)'});
32
33 print "\n\n\n\===== CONFIGURE DOCBASE START =====\n\n\n";
34 logon();
35 create_new_object_types();
36 create_new_storage();
37 build_folder_hierarchy();
38 create_users();
39 logoff();
40 print "\n\n\===== CONFIGURE DOCBASE DONE =====\n\n\n";
41 exit;
42
43 sub logon {
44 print "Enter Docbase name: ";
45 chomp($DOCBASE = (<STDIN>));
46 print "Enter dmadmin Username: ";
47 chomp($USERNAME = (<STDIN>));
48 print "Enter Password: ";
49 ReadMode 'noecho';
50 chomp ($PASSWD = (<STDIN>));
51 ReadMode 'normal';
52 $SESSION_ID = dm_Connect($DOCBASE,$USERNAME,$PASSWD);
53 die dm_LastError() unless $SESSION_ID;
54 print "\n\n";;
55 }
56
57 sub logoff {
58 print "\n\nLogging off...\n\n";
59 dmAPIExec("disconnect,$SESSION_ID");
60 }
61
62 sub build_folder_hierarchy {
63 print "Building folder hierarchy...\n";
64
65 foreach (@FOLDERS) {
66 print "\t$_\n";
67 warn dm_LastError($SESSION_ID) unless dm_CreatePath($_);
68 }
69 }
70
71 sub create_users {
72 print "Creating news users...\n";
73
74 foreach my $user (keys %USERS) {
75 print "\t$user\n";
76
77 my %ATTRS = ();
78 my $puser = $USERS{$user};
79
80 # remember these users need OS accounts too!
81 foreach my $attrs (keys %$puser) {
82 $ATTRS{$attrs} = $$puser{$attrs}
83 }
84 $ATTRS{'user_name'} = $user;
85 my $obj_id = dm_CreateObject("dm_user",%ATTRS);
86 warn dm_LastError($SESSION_ID) unless $obj_id;
87 warn dm_LastError($SESSION_ID) unless

An Introduction to Db::Documentum, Version 1.1 Page 21

88 dmAPIExec("save,$SESSION_ID,$obj_id");
89 }
90 }
91
92 sub create_new_object_types {
93 print "Creating object types...\n";
94 foreach my $type (keys %TYPES) {
95 print "\t$type\n";
96
97 my %attrs = ();
98 my $ptype = $TYPES{$type};
99
100 foreach my $attr (keys %$ptype) {
101 $attrs{$attr} = $$ptype{$attr}
102 }
103
104 # we can only do this because we know dm_document is the super-type
105 # of all these types.
106 warn dm_LastError($SESSION_ID) unless
 dm_CreateType($type,"dm_document",%attrs);
107 }
108 }
109
110 sub create_new_storage {
111 print "Creating new storage location...\n";
112
113 # Create new location object
114 my %ATTRS = (object_name => 'news-location',
115 path_type => 'directory',
116 security_type => 'public',
117 file_system_path => $CONTENT_DIR);
118 my $obj_id = dm_CreateObject("dm_location",%ATTRS);
119
120 if ($obj_id) {
121 dmAPIExec("save,$SESSION_ID,$obj_id");
122 } else {
123 warn dm_LastError($SESSION_ID);
124 }
125
126 # Create new filestore object
127 %ATTRS = ();
128 %ATTRS = (name => 'news-filestore',
129 root => 'news-location');
130 $obj_id = dm_CreateObject("dm_filestore",%ATTRS);
131
132 if ($obj_id) {
133 dmAPIExec("save,$SESSION_ID,$obj_id");
134 } else {
135 warn dm_LastError($SESSION_ID);
136 }
137
138 # Create new fulltext index object
139 %ATTRS = ();
140 %ATTRS = (index_name => 'news-index',
141 store_name => 'news-filestore',
142 location_name => 'news-location');
143 dm_CreateObject("dm_fulltext_index",%ATTRS);
144
145 if ($obj_id) {
146 dmAPIExec("save,$SESSION_ID,$obj_id");
147 } else {

An Introduction to Db::Documentum, Version 1.1 Page 22

148 warn dm_LastError($SESSION_ID);
149 }
150
151 # Alter all news_service types to use news_service
152 $sql = "ALTER TYPE news_service_type SET DEFAULT STORAGE
 'news-filestore'";
153 my $api_stat = dmAPIExec("execquery,$SESSION_ID,'F',$sql");
154
155 if ($api_stat) {
156 $col_id = dmAPIGet("getlastcoll,$SESSION_ID");
157 dmAPIExec("close,$SESSION_ID,$col_id");
158 } else {
159 warn dm_LastError($SESSION_ID);
160 }
161 }
162
163 # __EOF__

4.3.2 Discussion

This script is pretty straightforward in what it does: logs on, creates some new object types,
creates a few folders, creates a new user, and logs off (see lines 33 - 41). It's the details that are
of interest, so let's examine them.

First, note the use of the data structures in lines 10 -31. These structures make visualizing and
maintaining objects in the script much easier. In fact, the ease-of-use and flexibility of data
structures in Perl is on of the primary reasons I chose Perl to create my installation scripts. I
encourage the use of data structures like these everywhere possible.

The cabinet/folder hierarchy is contained in the list, @FOLDERS; the order of the paths is
irrelevant. The users are defined in %USERS, a hash of hashes (HoH). The HoH makes it clear
by inspection what users I am creating and their attribute values. %TYPES is also a HoH making
it clear the types of objects I will create. In this example I am creating only one new object type
(news_wire_type) with a single custom attribute (news_agency). Notice that this new
type is a subtype of dm_document and that dm_document has been hardcoded into the
dm_CreateType() function call in the create_new_object_types() subroutine (line 106).
If I were creating a number of new types with different supertypes, I would need to modify the
data structure or subroutine to account for them.

The first subroutine encountered after logging on is create_new_object_types() (lines
92 - 108). This subroutine uses embedded foreach loops to iterate over the %TYPES HoH and
extract each type definition. The outer foreach loop iterates over each key (type name) in the
%TYPES HoH and the inner loop extracts each type's definition into %attrs. Line 106 creates
the object in the Docbase using %attrs. Notice that I used warn statements to indicate when
errors occur. die is probably more appropriate because an unnoticed error in configuration can
be disastrous later.

The next step in the configuration is to create a new storage location for the content of our
news_wire_type objects. This is done by create_new_storage() on lines 110 - 161.
Three things are notable about this subroutine: 1) the objects it creates; 2) the order in which

An Introduction to Db::Documentum, Version 1.1 Page 23

they are created; and 3) the fact that the leaf directory of $CONTENT_DIR cannot exist. This
subroutine was adapted from Documentum's primtp.dql script found in the DocPage Server
System Administrator's Guide. See the guide for further explanation.

Next, let's examine the creation of the cabinet/folder hierarchy in the Docbase.
build_folder_hierarchy() on lines 62 - 69 creates the cabinet/folder hierarchy by
simply iterating over the @FOLDERS list and passing each line (containing a path) to
dm_CreatePath(), where the real work is done.

The final step in the configuration is to create users. This is done by the create_users()
subroutine on lines 71 - 90. This subroutine functions in a manner nearly identical to
create_new_object_types() in that it uses embedded foreach loops to iterate over an
HoH to create users. Remember that each Documentum user also requires an OS account.

It's obvious from this example that with a few data structures and a few smart subroutines, you
can use Perl to quickly and easily build configuration scripts for Documentum. With some
planning, generalization, and more extensive use of data structures, this script can easily be
extended to perform maintenance or data migration.

4.3.3 Output

Here is the output from running config.pl. The output is not nearly as important as the
changes occurring inside the Docbase.

===== CONFIGURE DOCBASE START =====

Enter Docbase name: Docbase-1
Enter dmadmin Username: dmadmin
Enter Password:

Creating object types...
 news_wire_type
Creating new storage location...
Building folder hierarchy...
 Data/News_Services
 Data/News_Services/AP
 Data/News_Services/AP/1999
 Data/News_Services/AP/2000
 Data/News_Services/Reuters
 Data/News_Services/Reuters/1999
 Data/News_Services/Reuters/2000
Creating news users...
 listener

Logging off...

===== CONFIGURE DOCBASE DONE =====

Figure 3 - Output from the config.pl script.

An Introduction to Db::Documentum, Version 1.1 Page 24

4.4 Serial Port Listener

The listener.pl script demonstrates how Perl can be used to capture real-time data and
store it in Documentum. The real-time data are news stories streamed over an AP serial news
feed and into my PC's serial port. The script listens to the serial port, waiting to hear a story
delimiter, and then saves the story in the Docbase. This script assumes that you have an AP
serial news feed attached to the serial port of your PC (Doesn't everybody?). If you don't, the
serv.pl script discussed in section 5.4.3 can be used to simulate one. listener.pl makes
use of the object, user, and folder hierarchy created by the config.pl script above.

4.4.1 listener.pl

1 #!/usr/local/bin/perl
2 # listener.pl
3 # (c) 2000 MS Roth
4
5 use Win32::SerialPort;
6 use Db::Documentum qw(:all);
7 use Db::Documentum::Tools qw(:all);
8 use Cwd;
9
10 $PORT_NAME = "COM1";
11 $OUTPUT_DIR = cwd() . "\\news";
12 $DM_BASE_CABINET = "/Data/News_Services/AP";
13 $CURRENT_DM_PATH = "";
14 $LAST_DAY = (localtime)[3];
15
16 @MONTHS = qw(January February March April May June July August
17 September October November December);
18
19 $NonASCII = '\x7f-\xff'; # chars above printable characters
20 $ctrl1 = '\x00-\x09'; # chars below LF
21 $ctrl2 = '\x0b-\x0c'; # chars between LF and CR
22 $ctrl3 = '\x0e-\x1f'; # chars between CR and ASCII
23
24 $DOCBASE = "Docbase-1";
25 $USERNAME = "listener";
26 $PASSWORD = "XXX";
27
28
29 $SESSION_ID = dm_Connect($DOCBASE,$USERNAME,$PASSWORD);
30 die dm_LastError() unless $SESSION_ID;
31
32 # make sure we have a temp dir for saving our files
33 if (! -e "$OUTPUT_DIR") {
34 mkdir "$OUTPUT_DIR","0777";
35 }
36
37 # make sure we have a dm folder for saving files
38 $CURRENT_DM_PATH = create_todays_folder();
39
40 # open Serial Port
41 $Port = new Win32::SerialPort($PORT_NAME) ||
42 die "*** Could not open $PORT_NAME $^E ***\n";
43 $Port->databits(8);

An Introduction to Db::Documentum, Version 1.1 Page 25

44 $Port->baudrate(1200);
45 $Port->parity("none");
46 $Port->stopbits(1);
47 $Port->handshake("none");
48 $Port->buffers(4096,4096);
49 $Port->write_settings || undef $Port;
50 die "*** Could not write settings to $PORT_NAME ***\n" unless $Port;
51
52 print "\n\nListening to port $PORT_NAME. Press Control-C to quit.\n";
53
54 # Loop infinitely over open port
55 while (1) {
56 my $gotit = "";
57 $Port->lookclear;
58
59 # use 'AP-NY-99-99-99 9999EST<' as story delimiter
60 $Port->are_match("-re",'AP-NY-\d{1,2}-\d{1,2}-\d{2,4}\s+\d{2,4}\w{3}<');
61
62 until("" ne $gotit) {
63 $gotit = $Port->streamline;
64 ##### VERY IMPORTANT TO SLEEP #####
65 sleep(1);
66 }
67 my ($match) = ($Port->lastlook)[0];
68
69 # clean up story
70 $gotit =~ s/\n+/\n/sg; # make it single spaced
71 $gotit =~ s/[$NonASCII]//sg; # remove non-ASCII chars
72 $gotit =~ s/[$ctrl1]//sg; # remove low control chars
73 $gotit =~ s/[$ctrl2]//sg; # remove middle control chars
74 $gotit =~ s/[$ctrl3]//sg; # remove upper control chars
75
76 # write story to file
77 my $filename = build_filename();
78 print "$PORT_NAME: " . localtime() . " FILE:$filename -> ";
79 open (APFILE,">$OUTPUT_DIR/$filename") ||
80 die "Could not open $OUTPUT_DIR/$filename. $!";
81 print APFILE $gotit;
82 close (APFILE);
83
84 # do Attrs
85 my %Attrs = ();
86
87 # parse title from story
88 # There are several lines that start with ^ and end with < so examine
89 # them all.
90 while ($gotit =~ /\^(.*?)\</g) {
91 my $t = $1;
92 $t =~ s/\'//g;
93 # choose the last one that is not an ed comment
94 if (($t !~ /Ed/) && ($t !~ /AP Photo/)){
95 $Attrs{'title'} = $t;
96 $Attrs{'title'} =~ s/\'//g; # remove appostrophies
97 }
98 }
99
100 if (! exists $Attrs{'title'}) {
101 $Attrs{'title'} = $filename;
102 }
103
104 $Attrs{'news_agency'} = 'AP';

An Introduction to Db::Documentum, Version 1.1 Page 26

105 $Attrs{'a_full_text'} = 'TRUE';
106 $Attrs{'object_name'} = $filename;
107
108 # put in docbase
109 # if the day changed on us, create a new folder
110 if ((localtime)[3] != $LAST_DAY) {
111 $CURRENT_DM_PATH = create_todays_folder();
112 $LAST_DAY = (localtime)[3];
113 }
114
115 my $obj_id = dm_CreateObject("news_wire_type",%Attrs);
116 if ($obj_id) {
117 warn dm_LastError($SESSION_ID,3,"all") unless
118 dmAPIExec("setfile,$SESSION_ID,$obj_id,$OUTPUT_DIR/
 $filename,crtext");
119 warn dm_LastError($SESSION_ID,3,"all") unless
120 dmAPIExec("link,$SESSION_ID,$obj_id,\'$CURRENT_DM_PATH\'");
121 warn dm_LastError($SESSION_ID,3,"all") unless
122 dmAPIExec("save,$SESSION_ID,$obj_id");
123
124 print " OBJECT:$obj_id\n";
125 unlink "$OUTPUT_DIR/$filename";
126 }
127 else {
128 print "ERROR: " . dm_LastError($SESSION_ID) . "\n";
129 }
130 }
131
132
133 sub build_filename {
134 my ($sec,$min,$hour,$mday,$mon,$year) = (localtime)[0..5];
135 $mon++;
136 $year += 1900;
137 return sprintf("AP-%04d%02d%02d-%02d%02d%02d\.txt",
 $year,$mon,$mday,$hour,$min,$sec);
138 }
139
140 sub logoff {
141 print "\n\nLogging off...\n\n";
142 dmAPIExec("disconnect,$SESSION_ID");
143 if (defined $Port) {
144 $Port->close || die "Could not close $PORT_NAME.\n";
145 undef $Port;
146 }
147 exit;
148 }
149
150 sub create_todays_folder {
151 # create today's folder in docbase
152 my ($mday,$mon,$year) = (localtime)[3..5];
153 $mday = "0$mday" if ($mday !~ /\d\d/);
154 $year += 1900;
155 my $path = "$DM_BASE_CABINET/$year/$MONTHS[$mon]/$mday";
156 die dm_LastError($SESSION_ID) unless dm_CreatePath($path);
157 return $path;
158 }
159
160 # __EOF__

An Introduction to Db::Documentum, Version 1.1 Page 27

4.4.2 Discussion

listener.pl uses the Win32::SerialPort module. Win32::SerialPort provides an object-
based interface to your PC's serial port8. If you don't have this module, you need to get it from
the CPAN. For more information regarding the use of Win32::SerialPort, see the
Win32::SerialPort documentation.

To begin, this script defines some constants (lines 10 - 26), logs on to the Docbase (lines 29 -
30), creates a local working directory (lines 32 - 35), creates a folder hierarchy in the Docbase
(lines 37 - 38), and opens and configures the serial port (lines 40 - 52). Then, this script lives
within the infinite while loop defined on lines 54 - 130. Each story is read from the serial port
by the until loop on lines 62 - 66. When the story delimiter (defined on line 60) is
encountered in the input data, the story is assigned to $gotit (line 63) and the until loop
exits. Note: the sleep in this loop is paramount. Without it, the script won't give any CPU
time to other processes on your computer!

Once a complete story is contained in $gotit, it is cleaned up on lines 69 - 74 and saved to a
temporary file on lines 76 - 82. Lines 87 - 106 extract information from the body of the story
itself and assign values to a few attributes in the %Attrs hash. Lines 108 - 129 check the story
into the Docbase using setfile() to transfer the story contents and link() to put it in the
correct folder. That's essentially it.

There are a few things I want to point out about this script. First, examine lines 87 - 98. This
loop tries to extract the title from the story. Legitimate news stories have a title, and often an
editor and photographer that are denoted by lines that begin with "̂ " and end with "<". For
example:

^Suspect in police shooting agrees to testify for lighter sentence<
^AP Photos<

When that is the case, and the reporter followed the format, this loop does a good job of
extracting the title and assigning it to the title key in %Attrs. However, the news wire often
carries stories that don't adhere to this format such as: corrections, multi-part stories,
announcements, and stock market reports. In those cases, no title is extracted and $filename
is assigned to the title key of %Attrs.

Second, notice that on line 105 I explicitly flag the story for full-text indexing. This is important
if you want to be able to find the story using the web interface in the next example. This, of
course, assumes that your server is running the full- text indexing job.

This is a powerful script for only 160 lines of code. It contains the basic elements needed for
real-time and bulk data loading, and it wouldn't take much to convert it from a script that listens
to a serial port to one that reads a file or a database table as input. Scripts of this type are
invaluable when bulk loading or migrating data into Documentum.

8 The UNIX equivalent of Win32::SerialPort is Device::SerialPort; also available from the CPAN.

An Introduction to Db::Documentum, Version 1.1 Page 28

I have found that listener.pl runs well as a Windows NT service. To learn how to convert
a Perl script into a Windows NT service, read Kevin Meltzer's Perl Journal (http://www.tpj.com)
article "Turning a Perl Program Into an NT Service" in issue #15.

4.4.3 serv.pl

listener.pl makes a big assumption. It assumes that you have access to an AP serial news
feed. I realize that most people do not have access to such a thing. In fact, I didn't either when I
wrote this script. That's why I wrote the serv.pl script. serv.pl will serve any text file to a
serial port. You can think of it as the reciprocal of listener.pl in that it talks instead of
listens to the serial port!

1 #!/usr/bin/perl
2 # serv.pl
3 # (c) 2000 MS Roth
4
5 use Win32::SerialPort;
6
7 $PORT_NAME = "COM2";
8 $DATA_FILE = "ap.txt";
9
10 # open port
11 $Port = new Win32::SerialPort($PORT_NAME) ||
 die "Could not open $PORT_NAME. $^E\n";
12 $Port->databits(8);
13 $Port->baudrate(1200);
14 $Port->parity("none");
15 $Port->stopbits(1);
16 $Port->handshake("none");
17 $Port->buffers(4096,4096);
18 $Port->write_settings || undef $Port;
19 die "Could not write settings to $PORT_NAME.\n" unless $Port;
20
21 # read data file into memory
22 open(DATA,"<$DATA_FILE") || die "Could not open $DATA_FILE for read. $!";
23 @data = (<DATA>);
24 close(DATA);
25
26 print "\n\nServing test data ($DATA_FILE) on port $PORT_NAME.
 Press Control-C to quit.\n\n";
27
28 # serve data
29 while(1) {
30 print "\n#";
31 foreach (@data) {
32 $Port->write($_);
33 if (/AP-NY/i) {
34 print "\.";
35 sleep(int(rand 20));
36 }
37 }
38 }
39
40 # __EOF__

An Introduction to Db::Documentum, Version 1.1 Page 29

4.4.4 Discussion

This script simply opens the serial port, reads the $DATA_FILE into memory, and endlessly
spews it out. A few things to note here:

1. My ap.txt was a text file containing real, captured data from my customer's AP serial
news feed. You can use any text file that you like, but you will want to change the
regular expression on line 33 to match your story delimiter. You will need to make this
change in listener.pl also (line 60).

2. Line 35 executes a random sleep between successive stories. This pause between
stories more closely emulates the timing of a real AP serial news feed.

3. To use listener.pl and serv.pl together on the same machine, run them in
separate command windows, and connect your serial ports together with a null modem
cable.9

4.4.5 Output

The output generated by the serv.pl script looks like this. Each "#" represents an iteration of
the data file, and each "." represents a story sent to the serial port.

Serving test data (ap.txt) on port COM2. Press Control-C to quit.
#.
.
#.

Figure 4 - Output from serv.pl script.

The output generated by the listener.pl script is a little more interesting. listener.pl
informs you at which port and at what time a story was received, what it named the file (and
hence the object_name in the Docbase), and what the r_object_id was when it was
checked into the Docbase.

Listening to port COM1. Press Control-C to quit.
COM1: Wed Jul 5 10:51:51 2000 FILE:AP-20000705-105151.txt ->
OBJECT:0901605380011120
COM1: Wed Jul 5 10:52:19 2000 FILE:AP-20000705-105219.txt ->
OBJECT:0901605380011121
COM1: Wed Jul 5 10:52:43 2000 FILE:AP-20000705-105243.txt ->
OBJECT:0901605380011122
COM1: Wed Jul 5 10:52:58 2000 FILE:AP-20000705-105258.txt ->
OBJECT:0901605380011123
COM1: Wed Jul 5 10:53:16 2000 FILE:AP-20000705-105316.txt ->
OBJECT:0901605380011124
COM1: Wed Jul 5 10:53:25 2000 FILE:AP-20000705-105325.txt ->
OBJECT:0901605380011125
COM1: Wed Jul 5 10:53:33 2000 FILE:AP-20000705-105333.txt ->
OBJECT:0901605380011126

Figure 5 - Sample listener.pl output.

9 This should also work on UNIX systems, although I confess, I have never tried it.

An Introduction to Db::Documentum, Version 1.1 Page 30

In WorkSpace, the result of running config.pl and listener.pl looks like this:

Figure 6 - Cabinet/folder hierarchy in WorkSpace.

4.5 Web Access

One of the more fun applications of Db::Documentum is the World Wide Web. Documentum
provides a web server (RightSite10) and environment for developing and fielding web-based
solutions. However, sometimes all that overhead isn't necessary. Sometimes, a simple solution
will suffice. In these instances, Perl and Db::Documentum fit the bill perfectly.

The following set of scripts provide a bare-bones example of hosting a Docbase on the web using
CGI, Perl, and Db::Documentum. The scripts will provide web-based search-and-retrieval
services for the archive of news stories the listener.pl script is depositing in the Docbase.
The first script, show_files.pl, logs on; querys the Docbase for news stories; and builds a
list of the query results. The second script, getfile.pl, displays the files on the query results
list when they are selected.

This example assumes you are running a web server. If not, there are plenty of free ones on the
web--some are even written in Perl (check the CPAN). Both show_files.pl and
getfile.pl run as CGI programs and should be located in your web server's cgi-bin
directory.

10 And now with Documentum 4i v4.1, the Web Developers Kit (WDK).

An Introduction to Db::Documentum, Version 1.1 Page 31

4.5.1 dmquery.html

Before these scripts will run, they need an HTML page to launch from; dmquery.html
provides that launch pad. This page displays a simple form that asks you to enter your logon
information and a word to search for.

1 <HTML>
2 <!-- dmquery.html -->
3 <!-- (C) 2000 MS Roth -->
4 <HEAD><TITLE>Db::Documentum Web Demo Page</TITLE></HEAD>
5
6 <BODY>
7 <P>
8 <CENTER>
9 <H1>Db::Documentum Web Demo Page</H1>
10 <H2>Logon to Docbase</H2><P>
11 <FORM METHOD=POST ACTION='cgi-bin/show_files.pl'>
12 <TABLE BORDER=1>
13 <TR><TD>Docbase</TD><TD><INPUT TYPE='text' SIZE=40 NAME='docbase'></TD></TR>
14 <TR><TD>User</TD><TD><INPUT TYPE='text' SIZE=40 NAME='username'></TD></TR>
15 <TR><TD>Password</TD><TD><INPUT TYPE='password' SIZE=40
 NAME='password'></TD></TR>
16 </TABLE>
17 <H2>Query Docbase for:</H2>
18 <INPUT TYPE='text' NAME='search'>
19 <INPUT TYPE='submit'>
20 </FORM>
21 </CENTER>
22 </BODY>
23 </HTML>

4.5.2 show_files.pl

The show_files.pl script is the action of the form created by dmquery.html. It does
the query and displays the results as hyperlinks.

1 #!/usr/bin/perl
2 # show_files.pl
3 # (c) 2000 MS Roth
4
5 $| = 1;
6 use Db::Documentum qw(:all);
7 use Db::Documentum::Tools qw(:all);
8 use CGI qw(:standard);
9 use CGI::Carp 'fatalsToBrowser';
10
11 $q = new CGI;
12
13 # get input from form
14 $input = $q->param('search');
15 $docbase = $q->param('docbase');
16 $username = $q->param('username');
17 $password = $q->param('password');
18
19 # logon to Docbase
20 $session = dm_Connect($docbase, $username, $password);
21 die dm_LastError() unless $session;

An Introduction to Db::Documentum, Version 1.1 Page 32

22
23 # set cookie for use by getfile.pl
24 %dm_session = ('docbase' =>$docbase,
25 'username'=>$username,
26 'password'=>$password);
27
28 $cookie = $q->cookie(-name => 'dm_session',
29 -value =>\%dm_session,
30 -path => '/cgi-bin',
31 -expires => '+5m');
32
33 print $q->header(-cookie => $cookie);
34
35 # start html page
36 print $q->start_html();
37 print "<CENTER><H2>Search Docbase for title containing \'$input\'
 </H2> </CENTER><HR>\n";
38
39 # build DQL query string
40 my $DQL = "select title,r_object_id,r_creation_date,news_agency from
 news_wire_type search document contains \'$input\' order
 by r_creation_date";
41
42 # do query
43 $col_id = dmAPIGet("readquery,$session,$DQL");
44
45 # if query succeeded
46 if ($col_id) {
47 print "\n";
48 # iterate over collection and print links
49 while(dmAPIExec("next,$session,$col_id")) {
50 my $title = dmAPIGet("get,$session,$col_id,title");
51 my $obj_id = dmAPIGet("get,$session,$col_id,r_object_id");
52 my $date = dmAPIGet("get,$session,$col_id,r_creation_date");
53 my $agency = dmAPIGet("get,$session,$col_id,news_agency");
54 print "$date --
 $agency -- $title\n";
55 }
56 dmAPIExec("close,$session,$col_id");
57 print "\n";
58 } else {
59 print "<CENTER><H3>Query returned no results.</CENTER>\n";
60 }
61
62 print $q->end_html();
63
64 # __EOF__

4.5.3 Discussion

There are three aspects of this script I want to discuss. The first is the use of CGI.pm on lines 8
and 9: don't do CGI without it. The second is the form of the URL printed on line 54. This URL
points to the getfile.pl script and passes (via the query- info portion of the URL) the object
ID of the document to retrieve. For example, an <A> tag produced by line 54 might look like
this:

 .

An Introduction to Db::Documentum, Version 1.1 Page 33

Third, I want to discuss the cookie. Lines 23 - 33 save your logon information to a cookie. This
is necessary because Db::Documentum executes a dmAPIDeInit() automatically when
show_files.pl terminates. dmAPIDeInit() destroys the apiconfig object created by
dmAPIInit() and effectively closes the session (RightSite certainly has an advantage over us
here!). To retrieve a document from the Docbase, getfile.pl will need an active session.
To provide it one, I stash your logon information in the cookie and retrieve it in getfiles.pl
to logon again.

Now, I will be the first to admit that saving logon information--especially passwords--in a cookie
is a bad idea. There are better solutions. However, since this script is meant only for
demonstration, I took the simple approach and saved the logon information in the cookie.

4.5.4 getfile.pl

The getfile.pl script retrieves the content of the document selected from the search results
page and displays it.

1 #!/usr/bin/perl
2 # getfile.pl
3 # (c) 2000 MS Roth
4
5 $| = 1;
6 use Db::Documentum qw(:all);
7 use Db::Documentum::Tools qw(:all);
8 use CGI qw(:standard);
9 use CGI::Carp 'fatalsToBrowser';
10
11 $q = new CGI;
12
13 # get obj_id from command line
14 $obj_id = $q->param('obj_id');
15
16 # get session from cookie
17 %dm_session = $q->cookie(-name => 'dm_session');
18 $docbase = $dm_session{'docbase'};
19 $username = $dm_session{'username'};
20 $password = $dm_session{'password'};
21
22 # logon or die
23 $session = dm_Connect($docbase, $username, $password);
24 die "No session or session has expired\." unless $session;
25
26 # get the type of content associated with obj_id
27 $DQL = "select a_content_type,object_name from dm_document where
 r_object_id = \'$obj_id\'";
28 $col_id = dmAPIGet("readquery,$session,$DQL");
29 if ($col_id) {
30 while(dmAPIExec("next,$session,$col_id")) {
31 $type = dmAPIGet("get,$session,$col_id,a_content_type");
32 $title = dmAPIGet("get,$session,$col_id,object_name");
33 }
34 dmAPIExec("close,$session,$col_id");
35 }
36 else {
37 $type = 'crtext';
38 }

An Introduction to Db::Documentum, Version 1.1 Page 34

39
40 # if plain text, print
41 if ($type eq 'crtext') {
42 print $q->header();
43 print $q->start_html();
44 print "<CENTER><H2>$title</H2></CENTER><HR>\n";
45
46 $col_id = dmAPIGet("getcontent,$session,$obj_id");
47 while(dmAPIExec("next,$session,$col_id")) {
48 $doc .= dmAPIGet("get,$session,$col_id,_content_buffer");
49 }
50 dmAPIExec("close,$session,$col_id");
51
52 print "<PRE>$doc</PRE>\n";
53 print $q->end_html();
54 }
55 # if other than plain text, download it to web server and redirect
56 else {
57 $dl_file = dmAPIGet("getfile,$session,$obj_id,\.\.\\$obj_id\.$type");
58 print $q->redirect("http://<host>/temp/$obj_id\.$type");
59 }
60
61 # __EOF__

4.5.5 Discussion

The getfile.pl script is simple enough. The basic idea is to get the object ID from the URL,
query the Docbase to determine what type the object is (text vs. binary), and retrieve the content
of the object in an appropriate manner.

The script begins by retrieving the object ID from the URL (line 14) and the cookie from the
browser (lines 17 - 20). Both of these tasks are made possib le by CGI.pm. Lines 22 - 38 logon
to the Docbase and execute a query to retrieve the content type information about the document
referenced by $object_id.

Starting at line 40, I branch based upon the content of $type. If I am dealing with a text
document (crtext), I execute lines 42 - 54, which use getcontent() to retrieve the object's
content and print it. Notice the loop on lines 47 - 50. This is necessary because
getcontent() returns a collection of pages. For this example, the collection will contain
only one page.

If the object's type is not text, the else condition is executed on lines 55 - 59. This is a bit over
designed for this example because I am only ever retrieving text files (news_wire_type), but
I wanted to show you an interesting trick if you ever expect to retrieve binary files. Line 57
downloads the file from the Docbase to the web server. Line 58 then redirects the browser to
$dl_file and lets the server and the browser resolve the MIME type and launch the
appropriate plug- in or helper application. Pretty neat trick, eh?

Two notes:

1. You will need to modify the path and host names on lines 57 - 58 to reflect your
configuration.

An Introduction to Db::Documentum, Version 1.1 Page 35

2. If you do retrieve binary files, make sure you occasionally delete the $dl_file files
from your web server; they can really add up after a while.

4.5.6 Output

To use the web interface, point your browser at http://<host>/dmquery.html, enter your logon
information and a word to search on.

Figure 7 - dmquery.html.

Clicking the Submit Query button results in the following response from show_files.pl

An Introduction to Db::Documentum, Version 1.1 Page 36

Figure 8 - query results for 'information.'

Clicking on "American Ambulance Association Commends Reps. Coburn and" launches
getfile.pl to display its contents.

Figure 9 - getfile.pl.

This has been a very simple example to demonstrate the basics of using CGI, Perl, and

An Introduction to Db::Documentum, Version 1.1 Page 37

Db::Documentum to host a Docbase on the web, it is far from complete. Besides the security
issue with the cookie, you might consider implementing some of these improvements:

• There is little or no error checking or recovery in either script. If empty collections or
object IDs are returned, you are often presented with only a blank page in your browser.

• In the show_files.pl script, you could display the cabinet/folder path associated
with each $title by querying for the i_folder_id and associating it with the
corresponding dm_folder object. This would provide the user some additional context
(i.e., date and wire service name) about the story.

• You might also consider giving everyone anonymous access to the Docbase, do away
with the cookie, and hard code the logon in the script.

• You could improve the DQL query to process Boolean search terms.

• You could employ templates to display the news articles in a more pleasing style and add
navigational aids so the directory structure can be traversed.

• You could use the ideas here to create an entirely different web application. For instance,
a guest book. The possibilities abound!

An Introduction to Db::Documentum, Version 1.1 Page 38

5 Closing
This tutorial has discussed the installation and contents of the Db::Documentum module and how
to use it. Through the use of the real-world examples, I hope I have given you an appreciation of
how easy and powerful programming for Documentum with Perl can be. From simple, one-time
scripts, to data capturing and migration, to entire applications, Perl and Db::Documentum can do
it all. Not only that, they can do it easily, flexibly, and cross-platform.

I know that Perl and Db::Documentum lack the flash and glamour of other Documentum-enabled
programming languages (e.g., Visual Basic, Java), but they excel in power and simplicity.
Besides, real hackers like 80x24! Who needs a GUI?

I would like to express my thanks to the people who have assisted me with this tutorial: Frances,
Matt, John, and Scott. Thanks!

[SOLI DEO GLORIA]

M. Scott Roth is co-author of the Db::Documentum module, and "just another Perl hacker" at
SAIC in Reston, VA. Mr. Roth is currently hard at work building a Perl interface to the DFC.
Feel free to contact him with your comments, suggestions, complaints, etc. regarding this
tutorial or Db::Documentum in general. Mr. Roth can be reached at
michael.s.roth@saic.com.

