%\VignetteIndexEntry{BuyseTest: wilcoxon test} %\VignetteEngine{R.rsp::asis} %\VignetteKeyword{PDF} %\VignetteKeyword{vignette} %\VignetteKeyword{package} ## * Single Wilcoxon test ## ** Exact test ## chunk 2 x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46) y <- c(1.15, 0.88, 0.90, 0.74, 1.21) df <- rbind(data.frame(value = x, group="x"), data.frame(value = y, group="y")) ## chunk 3 wilcox.test(value ~ group, data = df) ## chunk 4 asht::wmwTest(value ~ group, data = df, method = "exact.ce") ## chunk 5 eperm.BT <- BuyseTest(group ~ cont(value), data = df, add.halfNeutral = TRUE, method.inference = "permutation", n.resampling = 1e4, trace = FALSE, cpus = 5, seed = 10) confint(eperm.BT, statistic = "favorable") ## chunk 6 eU.BT <- BuyseTest(group ~ cont(value), data = df, add.halfNeutral = TRUE) confint(eU.BT, statistic = "favorable") ## chunk 7 etperm.BT <- BuyseTest(group ~ cont(value), data = df, add.halfNeutral = TRUE, method.inference = "studentized permutation", n.resampling = 1e4, trace = FALSE, seed = 10) confint(etperm.BT, statistic = "favorable") ## ** Approximate test ## chunk 8 set.seed(10) df2 <- rbind(data.frame(value = round(rnorm(50),2), group="x"), data.frame(value = round(rnorm(50),2), group="y")) any(duplicated(df2$value)) ## test whether there are any ties ## chunk 9 wilcox.test(value ~ group, data = df2) ## chunk 10 wmwTest(value ~ group, data = df2) ## chunk 11 wmwTest(value ~ group, data = df2, correct = FALSE) ## chunk 12 eperm.BT2 <- BuyseTest(group ~ cont(value), data = df2, add.halfNeutral = TRUE, method.inference = "varexact-permutation") confint(eperm.BT2, statistic = "favorable") ## chunk 13 eperm.BT2 <- BuyseTest(group ~ cont(value), data = df2, add.halfNeutral = TRUE, method.inference = "permutation", n.resampling = 1e4, trace = FALSE, cpus = 5, seed = 10) confint(eperm.BT2, statistic = "favorable", method.ci.resampling = "gaussian") ## * Multiple Wilcoxon tests ## chunk 14 set.seed(35) dt <- simBuyseTest(n.T=25, n.strata = 5) dt$id <- paste0("id",1:NROW(dt)) dt$strata <- as.character(dt$strata) head(dt) ## chunk 15 BuyseTest.options(order.Hprojection=1);BuyseTest.options(trace=0) ls.BT <- list("b-a=0" = BuyseTest(strata ~ cont(score), add.halfNeutral = TRUE, data = dt[dt$strata %in% c("a","b"),], method.inference = "u-statistic"), "c-a=0" = BuyseTest(strata ~ cont(score), add.halfNeutral = TRUE, data = dt[dt$strata %in% c("a","c"),], method.inference = "u-statistic"), "d-a=0" = BuyseTest(strata ~ cont(score), add.halfNeutral = TRUE, data = dt[dt$strata %in% c("a","d"),], method.inference = "u-statistic"), "e-a=0" = BuyseTest(strata ~ cont(score), add.halfNeutral = TRUE, data = dt[dt$strata %in% c("a","e"),], method.inference = "u-statistic") ) M.confint <- do.call(rbind,lapply(ls.BT,confint, statistic = "favorable")) cbind(M.confint,adj.p.value = p.adjust(M.confint[,"p.value"], method = "bonferroni")) ## chunk 16 e.mc <- BuyseMultComp(ls.BT, statistic = "favorable", cluster = "id", global = TRUE) print(e.mc, cols = c("estimate","se","p.value","adj.p.value")) ## chunk 17 M.cor <- cor(lava::iid(e.mc)) dimnames(M.cor) <- list(names(ls.BT),names(ls.BT)) M.cor ## * References