## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # library(COAP) # library(GFM) ## ----eval = FALSE------------------------------------------------------------- # n <- 200; p <- 200; # d= 50 # rank0 <- 6; # q = 5; # datList <- gendata_simu(seed = 1, n=n, p=p, d= d, rank0 = rank0, q= q, rho=c(2, 2), # sigma2_eps = 1) # X_count <- datList$X; Z <- datList$Z # H0 <- datList$H0; B0 <- datList$B0 # bbeta0 <- cbind( datList$mu0, datList$bbeta0) # ## ----eval = FALSE------------------------------------------------------------- # hq <- 5; hr <- 6 # system.time({ # tic <- proc.time() # reslist <- RR_COAP(X_count, Z= Z, q=hq, rank_use= hr, epsELBO = 1e-6) # toc <- proc.time() # time_coap <- toc[3] - tic[3] # }) ## ----eval = FALSE------------------------------------------------------------- # library(ggplot2) # dat_iter <- data.frame(iter=1:length(reslist$ELBO_seq), ELBO=reslist$ELBO_seq) # ggplot(data=dat_iter, aes(x=iter, y=ELBO)) + geom_line() + geom_point() + theme_bw(base_size = 20) # ## ----eval = FALSE------------------------------------------------------------- # library(GFM) # metricList <- list() # metricList$COAP <- list() # metricList$COAP$Tr_H <- measurefun(reslist$H, H0) # metricList$COAP$Tr_B <- measurefun(reslist$B, B0) # # norm_vec <- function(x) sqrt(sum(x^2/ length(x))) # metricList$COAP$err_bb <- norm_vec(reslist$bbeta-bbeta0) # metricList$COAP$err_bb1 <- norm_vec(reslist$bbeta[,1]-bbeta0[,1]) # metricList$COAP$Time <- time_coap ## ----eval = FALSE------------------------------------------------------------- # metricList$LFM <- list() # tic <- proc.time() # fit_lfm <- Factorm(X_count, q=q) # toc <- proc.time() # time_lfm <- toc[3] - tic[3] # # hbb1 <- colMeans(X_count) # metricList$LFM$Tr_H <- measurefun(fit_lfm$hH, H0) # metricList$LFM$Tr_B <- measurefun(fit_lfm$hB, B0) # metricList$LFM$err_bb1 <- norm_vec(hbb1- bbeta0[,1]) # metricList$LFM$err_bb <- NA # metricList$LFM$Time <- time_lfm ## ----eval = FALSE------------------------------------------------------------- # metricList$PoissonPCA <- list() # library(PoissonPCA) # tic <- proc.time() # fit_poispca <- Poisson_Corrected_PCA(X_count, k= hq) # toc <- proc.time() # time_ppca <- toc[3] - tic[3] # # hbb1 <- colMeans(X_count) # metricList$PoissonPCA$Tr_H <- measurefun(fit_poispca$scores, H0) # metricList$PoissonPCA$Tr_B <- measurefun(fit_poispca$loadings, B0) # metricList$PoissonPCA$err_bb1 <- norm_vec(log(1+fit_poispca$center)- bbeta0[,1]) # metricList$PoissonPCA$err_bb <- NA # metricList$PoissonPCA$Time <- time_ppca ## ----eval =FALSE-------------------------------------------------------------- # ## ZIPFA runs very slowly, so we do not run it here. # library(ZIPFA) # metricList$ZIPFA <- list() # system.time( # tic <- proc.time() # fit_zipfa <- ZIPFA(X_count, k=hq, display = FALSE) # toc <- proc.time() # time_zipfa <- toc[3] - tic[3] # ) # # # # idx_max_like <- which.max(fit_zipfa$Likelihood) # hbb1 <- colMeans(X_count) # metricList$ZIPFA$Tr_H <- measurefun(fit_zipfa$Ufit[[idx_max_like]], H0) # metricList$ZIPFA$Tr_B <- measurefun(fit_zipfa$Vfit[[idx_max_like]], B0) # metricList$PoissonPCA$Time <- time_zipfa # ## ----eval = FALSE------------------------------------------------------------- # metricList$GFM <- list() # tic <- proc.time() # fit_gfm <- gfm(list(X_count), type='poisson', q= q, verbose = F) # toc <- proc.time() # time_gfm <- toc[3] - tic[3] # metricList$GFM$Tr_H <- measurefun(fit_gfm$hH, H0) # metricList$GFM$Tr_B <- measurefun(fit_gfm$hB, B0) # metricList$GFM$err_bb1 <- norm_vec(fit_gfm$hmu- bbeta0[,1]) # metricList$GFM$err_bb <- NA # metricList$GFM$Time <- time_gfm # ## ----eval = FALSE------------------------------------------------------------- # PLNPCA_run <- function(X_count, covariates, q, Offset=rep(1, nrow(X_count))){ # require(PLNmodels) # # if(!is.character(Offset)){ # dat_plnpca <- prepare_data(X_count, covariates) # dat_plnpca$Offset <- Offset # }else{ # dat_plnpca <- prepare_data(X_count, covariates, offset = Offset) # } # # d <- ncol(covariates) # # offset(log(Offset))+ # formu <- paste0("Abundance ~ 1 + offset(log(Offset))+",paste(paste0("V",1:d), collapse = '+')) # # # myPCA <- PLNPCA(as.formula(formu), data = dat_plnpca, ranks = q) # # myPCA1 <- getBestModel(myPCA) # myPCA1$scores # # res_plnpca <- list(PCs= myPCA1$scores, bbeta= myPCA1$model_par$B, # loadings=myPCA1$model_par$C) # # return(res_plnpca) # } # # # # tic <- proc.time() # fit_plnpca <- PLNPCA_run(X_count, covariates = Z[,-1], q= q) # toc <- proc.time() # time_plnpca <- toc[3] - tic[3] # message(time_plnpca, " seconds") # # metricList$PLNPCA$Tr_H <- measurefun(fit_plnpca$PCs, H0) # metricList$PLNPCA$Tr_B <- measurefun(fit_plnpca$loadings, B0) # metricList$PLNPCA$err_bb1 <- norm_vec(fit_plnpca$bbeta[,1]- bbeta0[,1]) # metricList$PLNPCA$err_bb <- norm_vec(as.vector(fit_plnpca$bbeta) - as.vector(bbeta0)) # metricList$PLNPCA$Time <- time_plnpca ## ----eval =FALSE-------------------------------------------------------------- # ## GLLVM runs very slowly, so we do not run it here. # # library(gllvm) # colnames(Z) <- c(paste0("V",1: ncol(Z))) # tic <- proc.time() # fit <- gllvm(y=X_count, X=Z, family=poisson(), num.lv= q, control = list(trace=T)) # toc <- proc.time() # time_gllvm <- toc[3] - tic[3] # # metricList$GLLVM <- list() # metricList$GLLVM$Tr_H <- measurefun(fit$lvs, H0) # metricList$GLLVM$Tr_B <- measurefun(fit$params$theta, B0) # metricList$GLLVM$err_bb1 <- norm_vec(fit$params$beta0- bbeta0[,1]) # metricList$GLLVM$err_bb <- norm_vec(as.vector(cbind(fit$params$beta0,fit$params$Xcoef)) - as.vector(bbeta0)) # metricList$GLLVM$Time <- time_gllvm # } # ## ----eval = FALSE------------------------------------------------------------- # PoisReg <- function(X_count, covariates){ # library(stats) # hbbeta <- apply(X_count, 2, function(x){ # glm1 <- glm(x~covariates+0, family = "poisson") # coef(glm1) # } ) # return(t(hbbeta)) # } # tic <- proc.time() # hbbeta_poisreg <- PoisReg(X_count, Z) # toc <- proc.time() # time_poisreg <- toc[3] - tic[3] # metricList$GLM <- list() # metricList$GLM$Tr_H <- NA # metricList$GLM$Tr_B <- NA # metricList$GLM$err_bb1 <- norm_vec(hbbeta_poisreg[,1]- bbeta0[,1]) # metricList$GLM$err_bb <- norm_vec(as.vector(hbbeta_poisreg) - as.vector(bbeta0)) # metricList$GLM$Time <- time_poisreg # ## ----eval = FALSE------------------------------------------------------------- # mrrr_run <- function(Y, X, rank0, q=NULL, family=list(poisson()), familygroup=rep(1,ncol(Y))){ # # # require(rrpack) # # n <- nrow(Y); p <- ncol(Y) # # if(!is.null(q)){ # rank0 <- rank0+q # X <- cbind(X, diag(n)) # } # # svdX0d1 <- svd(X)$d[1] # init1 = list(kappaC0 = svdX0d1 * 5) ## this setting follows the example that authors provided. # # fit.mrrr <- mrrr(Y=Y, X=X[,-1], family = family, familygroup = familygroup, # penstr = list(penaltySVD = "rankCon", lambdaSVD = 0.1), # init = init1, maxrank = rank0) # hbbeta_mrrr <-t(fit.mrrr$coef[1:ncol(Z), ]) # if(!is.null(q)){ # Theta_hb <- (fit.mrrr$coef[(ncol(Z)+1): (nrow(Z)+ncol(Z)), ]) # svdTheta <- svd(Theta_hb, nu=q, nv=q) # return(list(hbbeta=hbbeta_mrrr, factor=svdTheta$u, loading=svdTheta$v)) # }else{ # return(list(hbbeta=hbbeta_mrrr)) # } # # # } # tic <- proc.time() # # res_mrrrz <- mrrr_run(X_count, Z, rank0) # toc <- proc.time() # time_mrrrz <- toc[3] - tic[3] # # metricList$MRRR_Z <- list() # metricList$MRRR_Z$Tr_H <- NA # metricList$MRRR_Z$Tr_B <-NA # metricList$MRRR_Z$err_bb1 <- norm_vec(res_mrrrz$hbbeta[,1]- bbeta0[,1]) # metricList$MRRR_Z$err_bb <- norm_vec(as.vector(res_mrrrz$hbbeta) - as.vector(bbeta0)) # metricList$MRRR_Z$Time <- time_mrrrz # ## ----eval = FALSE------------------------------------------------------------- # tic <- proc.time() # res_mrrrf <- mrrr_run(X_count, Z, rank0, q=q) # toc <- proc.time() # time_mrrrf <- toc[3] - tic[3] # metricList$MRRR_F <- list() # metricList$MRRR_F$Tr_H <- measurefun(res_mrrrf$factor, H0) # metricList$MRRR_F$Tr_B <- measurefun(res_mrrrf$loading, B0) # metricList$MRRR_F$err_bb1 <- norm_vec(res_mrrrf$hbbeta[,1]- bbeta0[,1]) # metricList$MRRR_F$err_bb <- norm_vec(as.vector(res_mrrrf$hbbeta) - as.vector(bbeta0)) # metricList$MRRR_F$Time <- time_mrrrf # ## ----eval = FALSE------------------------------------------------------------- # list2vec <- function(xlist){ # nn <- length(xlist) # me <- rep(NA, nn) # idx_noNA <- which(sapply(xlist, function(x) !is.null(x))) # for(r in idx_noNA) me[r] <- xlist[[r]] # return(me) # } # # dat_metric <- data.frame(Tr_H = sapply(metricList, function(x) x$Tr_H), # Tr_B = sapply(metricList, function(x) x$Tr_B), # err_bb1 =sapply(metricList, function(x) x$err_bb1), # err_bb = list2vec(lapply(metricList, function(x) x[['err_bb']])), # Method = names(metricList)) # dat_metric ## ----eval = FALSE, fig.width=9, fig.height=6---------------------------------- # library(cowplot) # p1 <- ggplot(data=subset(dat_metric, !is.na(Tr_B)), aes(x= Method, y=Tr_B, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL) + theme_bw(base_size = 16) # p2 <- ggplot(data=subset(dat_metric, !is.na(Tr_H)), aes(x= Method, y=Tr_H, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16) # p3 <- ggplot(data=subset(dat_metric, !is.na(err_bb1)), aes(x= Method, y=err_bb1, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16) # p4 <- ggplot(data=subset(dat_metric, !is.na(err_bb)), aes(x= Method, y=err_bb, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16) # plot_grid(p1,p2,p3, p4, nrow=2, ncol=2) ## ----eval = FALSE------------------------------------------------------------- # datList <- gendata_simu(seed = 1, n=n, p=p, d= d, rank0 = rank0, q= q, rho=c(3, 6), # sigma2_eps = 1) # X_count <- datList$X; Z <- datList$Z # res1 <- selectParams(X_count=datList$X, Z=datList$Z, verbose=F) # # print(c(q_true=q, q_est=res1['hq'])) # print(c(r_true=rank0, r_est=res1['hr'])) ## ----------------------------------------------------------------------------- sessionInfo()