## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- echo=FALSE-------------------------------------------------------------- knitr::opts_chunk$set(error = TRUE) ## ----setup-------------------------------------------------------------------- library(ConformalSmallest) library(ggplot2) ## ----eval=FALSE--------------------------------------------------------------- # library(glmnet) # library(MASS) # library(mvtnorm) # #source("ridge_funs.R") # name=paste("linear_fm_t3",sep="") # # # df <- 3 #degrees of freedom # l <- 60 #number of dimensions # l.lambda <- 100 # lambda_seq <- seq(0,200,l=l.lambda) # dim <- round(seq(5,300,l=l)) # alpha <- 0.1 # n <- 200 #number of training samples # n0 <- 100 #number of prediction points # nrep <- 100 #number of independent trials # rho <- 0.5 # # cov.efcp_linear_fm_t3 <- len.efcp_linear_fm_t3 <- matrix(0,nrep,l) # cov.vfcp_linear_fm_t3 <- len.vfcp_linear_fm_t3 <- matrix(0,nrep,l) # cov.naive_linear_fm_t3 <- len.naive_linear_fm_t3 <- matrix(0,nrep,l) # cov.param_linear_fm_t3 <- len.param_linear_fm_t3 <- matrix(0,nrep,l) # cov.star_linear_fm_t3 <- len.star_linear_fm_t3 <- matrix(0,nrep,l) # cov.cv10_linear_fm_t3 <- len.cv10_linear_fm_t3 <- matrix(0,nrep,l) # cov.cv5_linear_fm_t3 <- len.cv5_linear_fm_t3 <- matrix(0,nrep,l) # cov.cvloo_linear_fm_t3 <- len.cvloo_linear_fm_t3 <- matrix(0,nrep,l) # # # out.efcp.up <- out.efcp.lo <- matrix(0,n0,l) # out.vfcp.up <- out.vfcp.lo <- matrix(0,n0,l) # out.naive.up <- out.naive.lo <- matrix(0,n0,l) # out.param.up <- out.param.lo <- matrix(0,n0,l) # out.star.up <- out.star.lo <- matrix(0,n0,l) # out.cv10.up <- out.cv10.lo <- matrix(0,n0,l) # out.cv5.up <- out.cv5.lo <- matrix(0,n0,l) # out.cvloo.up <- out.cvloo.lo <- matrix(0,n0,l) # # # for(i in 1:nrep){ # if(i%%10 == 0){ # print(i) # } # for (r in 1:l){ # d <- dim[r] # set.seed(i) # # Sigma <- matrix(rho,d,d) # diag(Sigma) <- rep(1,d) # X <- rmvt(n,Sigma,df) #multivariate t distribution # beta <- rep(1:5,d/5) # eps <- rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2)) # Y <- X%*%beta+eps # # # X0 <- rmvt(n0,Sigma,df) # eps0 <- rt(n0,df)*(1+sqrt(X0[,1]^2+X0[,2]^2)) # Y0 <- X0%*%beta+eps0 # # # out.param <- ginverse.fun(X,Y,X0,alpha=alpha) # out.param.lo[,r] <- out.param$lo # out.param.up[,r] <- out.param$up # cov.param_linear_fm_t3[i,r] <- mean(out.param.lo[,r] <= Y0 & Y0 <= out.param.up[,r]) # len.param_linear_fm_t3[i,r] <- mean(out.param.up[,r]-out.param.lo[,r]) # # # out.efcp <- efcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) # out.efcp.up[,r] <- out.efcp$up # out.efcp.lo[,r] <- out.efcp$lo # cov.efcp_linear_fm_t3[i,r] <- mean(out.efcp.lo[,r] <= Y0 & Y0 <= out.efcp.up[,r]) # len.efcp_linear_fm_t3[i,r] <- mean(out.efcp.up[,r]-out.efcp.lo[,r]) # # # out.vfcp <- vfcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) # out.vfcp.up[,r] <- out.vfcp$up # out.vfcp.lo[,r] <- out.vfcp$lo # cov.vfcp_linear_fm_t3[i,r] <- mean(out.vfcp.lo[,r] <= Y0 & Y0 <= out.vfcp.up[,r]) # len.vfcp_linear_fm_t3[i,r] <- mean(out.vfcp.up[,r]-out.vfcp.lo[,r]) # # out.naive <- naive.fun(X,Y,X0,alpha=alpha) # out.naive.up[,r] <- out.naive$up # out.naive.lo[,r] <- out.naive$lo # cov.naive_linear_fm_t3[i,r] <- mean(out.naive.lo[,r] <= Y0 & Y0 <= out.naive.up[,r]) # len.naive_linear_fm_t3[i,r] <- mean(out.naive.up[,r]-out.naive.lo[,r]) # # # out.star <- star.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha) # out.star.up[,r] <- out.star$up # out.star.lo[,r] <- out.star$lo # cov.star_linear_fm_t3[i,r] <- mean(out.star.lo[,r] <= Y0 & Y0 <= out.star.up[,r]) # len.star_linear_fm_t3[i,r] <- mean(out.star.up[,r] - out.star.lo[,r]) # # # out.cv5 <- cv.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha,nfolds=5) # out.cv5.up[,r] <- out.cv5$up # out.cv5.lo[,r] <- out.cv5$lo # cov.cv5_linear_fm_t3[i,r] <- mean(out.cv5.lo[,r] <= Y0 & Y0 <= out.cv5.up[,r]) # len.cv5_linear_fm_t3[i,r] <- mean(out.cv5.up[,r] - out.cv5.lo[,r]) # # } # } # # ridge_linear_len100_t3=list(len.param_linear_fm_t3, len.naive_linear_fm_t3, len.vfcp_linear_fm_t3, len.star_linear_fm_t3, len.cv5_linear_fm_t3, len.efcp_linear_fm_t3) # save(ridge_linear_len100_t3, file = "ridge_linear_len100_t3.rda" ) # ridge_linear_cov100_t3=list(dim_linear_t3,cov.param_linear_fm_t3, cov.naive_linear_fm_t3, cov.vfcp_linear_fm_t3, cov.star_linear_fm_t3, cov.cv5_linear_fm_t3, cov.efcp_linear_fm_t3) # save(ridge_linear_cov100_t3, file = "ridge_linear_cov100_t3.rda" ) ## ----eval=FALSE,echo = FALSE-------------------------------------------------- # library(glmnet) # library(MASS) # library(mvtnorm) # name=paste("linear_fm_t5",sep="") # # # df <- 5 #degrees of freedom # l <- 60 #number of dimensions # l.lambda <- 100 # lambda_seq <- seq(0,200,l=l.lambda) # dim <- round(seq(5,300,l=l)) # alpha <- 0.1 # n <- 200 #number of training samples # n0 <- 100 #number of prediction points # nrep <- 100 #number of independent trials # rho <- 0.5 # # cov.efcp_linear_fm_t5 <- len.efcp_linear_fm_t5 <- matrix(0,nrep,l) # cov.vfcp_linear_fm_t5 <- len.vfcp_linear_fm_t5 <- matrix(0,nrep,l) # cov.naive_linear_fm_t5 <- len.naive_linear_fm_t5 <- matrix(0,nrep,l) # cov.param_linear_fm_t5 <- len.param_linear_fm_t5 <- matrix(0,nrep,l) # cov.star_linear_fm_t5 <- len.star_linear_fm_t5 <- matrix(0,nrep,l) # cov.cv10_linear_fm_t5 <- len.cv10_linear_fm_t5 <- matrix(0,nrep,l) # cov.cv5_linear_fm_t5 <- len.cv5_linear_fm_t5 <- matrix(0,nrep,l) # cov.cvloo_linear_fm_t5 <- len.cvloo_linear_fm_t5 <- matrix(0,nrep,l) # # # out.efcp.up <- out.efcp.lo <- matrix(0,n0,l) # out.vfcp.up <- out.vfcp.lo <- matrix(0,n0,l) # out.naive.up <- out.naive.lo <- matrix(0,n0,l) # out.param.up <- out.param.lo <- matrix(0,n0,l) # out.star.up <- out.star.lo <- matrix(0,n0,l) # out.cv10.up <- out.cv10.lo <- matrix(0,n0,l) # out.cv5.up <- out.cv5.lo <- matrix(0,n0,l) # out.cvloo.up <- out.cvloo.lo <- matrix(0,n0,l) # # # # for(i in 1:nrep){ # if(i%%10 == 0){ # print(i) # } # for (r in 1:l){ # d <- dim[r] # set.seed(i) # # Sigma <- matrix(rho,d,d) # diag(Sigma) <- rep(1,d) # X <- rmvt(n,Sigma,df) #multivariate t distribution # beta <- rep(1:5,d/5) # eps <- rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2)) # Y <- X%*%beta+eps # # # X0 <- rmvt(n0,Sigma,df) # eps0 <- rt(n0,df)*(1+sqrt(X0[,1]^2+X0[,2]^2)) # Y0 <- X0%*%beta+eps0 # # # out.param <- ginverse.fun(X,Y,X0,alpha=alpha) # out.param.lo[,r] <- out.param$lo # out.param.up[,r] <- out.param$up # cov.param_linear_fm_t5[i,r] <- mean(out.param.lo[,r] <= Y0 & Y0 <= out.param.up[,r]) # len.param_linear_fm_t5[i,r] <- mean(out.param.up[,r]-out.param.lo[,r]) # # # out.efcp <- efcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) # out.efcp.up[,r] <- out.efcp$up # out.efcp.lo[,r] <- out.efcp$lo # cov.efcp_linear_fm_t5[i,r] <- mean(out.efcp.lo[,r] <= Y0 & Y0 <= out.efcp.up[,r]) # len.efcp_linear_fm_t5[i,r] <- mean(out.efcp.up[,r]-out.efcp.lo[,r]) # # # out.vfcp <- vfcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) # out.vfcp.up[,r] <- out.vfcp$up # out.vfcp.lo[,r] <- out.vfcp$lo # cov.vfcp_linear_fm_t5[i,r] <- mean(out.vfcp.lo[,r] <= Y0 & Y0 <= out.vfcp.up[,r]) # len.vfcp_linear_fm_t5[i,r] <- mean(out.vfcp.up[,r]-out.vfcp.lo[,r]) # # out.naive <- naive.fun(X,Y,X0,alpha=alpha) # out.naive.up[,r] <- out.naive$up # out.naive.lo[,r] <- out.naive$lo # cov.naive_linear_fm_t5[i,r] <- mean(out.naive.lo[,r] <= Y0 & Y0 <= out.naive.up[,r]) # len.naive_linear_fm_t5[i,r] <- mean(out.naive.up[,r]-out.naive.lo[,r]) # # # out.star <- star.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha) # out.star.up[,r] <- out.star$up # out.star.lo[,r] <- out.star$lo # cov.star_linear_fm_t5[i,r] <- mean(out.star.lo[,r] <= Y0 & Y0 <= out.star.up[,r]) # len.star_linear_fm_t5[i,r] <- mean(out.star.up[,r] - out.star.lo[,r]) # # # out.cv5 <- cv.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha,nfolds=5) # out.cv5.up[,r] <- out.cv5$up # out.cv5.lo[,r] <- out.cv5$lo # cov.cv5_linear_fm_t5[i,r] <- mean(out.cv5.lo[,r] <= Y0 & Y0 <= out.cv5.up[,r]) # len.cv5_linear_fm_t5[i,r] <- mean(out.cv5.up[,r] - out.cv5.lo[,r]) # # } # } # # ridge_linear_cov100_t5=list(dim_linear_t5,cov.param_linear_fm_t5, cov.naive_linear_fm_t5, cov.vfcp_linear_fm_t5, cov.star_linear_fm_t5, cov.cv5_linear_fm_t5, cov.efcp_linear_fm_t5) # save(ridge_linear_cov100_t5, file = "ridge_linear_cov100_t5.rda" ) # ridge_linear_len100_t5=list(len.param_linear_fm_t5, len.naive_linear_fm_t5, len.vfcp_linear_fm_t5, len.star_linear_fm_t5, len.cv5_linear_fm_t5, len.efcp_linear_fm_t5) # save(ridge_linear_len100_t5, file = "ridge_linear_len100_t5.rda" ) ## ----loading the data--------------------------------------------------------- data(ridge_linear_cov100_t3,package = "ConformalSmallest") data(ridge_linear_len100_t3,package = "ConformalSmallest") dim=ridge_linear_cov100_t3[[1]] cov.param_linear_fm_t3=ridge_linear_cov100_t3[[2]] cov.naive_linear_fm_t3=ridge_linear_cov100_t3[[3]] cov.vfcp_linear_fm_t3=ridge_linear_cov100_t3[[4]] cov.star_linear_fm_t3=ridge_linear_cov100_t3[[5]] cov.cv5_linear_fm_t3=ridge_linear_cov100_t3[[6]] cov.efcp_linear_fm_t3=ridge_linear_cov100_t3[[7]] len.param_linear_fm_t3=ridge_linear_len100_t3[[1]] len.naive_linear_fm_t3=ridge_linear_len100_t3[[2]] len.vfcp_linear_fm_t3=ridge_linear_len100_t3[[3]] len.star_linear_fm_t3=ridge_linear_len100_t3[[4]] len.cv5_linear_fm_t3=ridge_linear_len100_t3[[5]] len.efcp_linear_fm_t3=ridge_linear_len100_t3[[6]] len.param = len.param_linear_fm_t3/len.vfcp_linear_fm_t3 len.naive = len.naive_linear_fm_t3/len.vfcp_linear_fm_t3 len.star = len.star_linear_fm_t3/len.vfcp_linear_fm_t3 len.cv5 = len.cv5_linear_fm_t3/len.vfcp_linear_fm_t3 len.efcp = len.efcp_linear_fm_t3/len.vfcp_linear_fm_t3 len.vfcp = len.vfcp_linear_fm_t3/len.vfcp_linear_fm_t3 df.cov3=data.frame(dim,apply(cov.param_linear_fm_t3,2,mean),apply(cov.naive_linear_fm_t3,2,mean),apply(cov.vfcp_linear_fm_t3,2,mean),apply(cov.star_linear_fm_t3,2,mean),apply(cov.cv5_linear_fm_t3,2,mean), apply(cov.efcp_linear_fm_t3,2,mean)) df.cov3_sd=data.frame(dim,apply(cov.param_linear_fm_t3,2,sd),apply(cov.naive_linear_fm_t3,2,sd),apply(cov.vfcp_linear_fm_t3,2,sd),apply(cov.star_linear_fm_t3,2,sd),apply(cov.cv5_linear_fm_t3,2,sd), apply(cov.efcp_linear_fm_t3,2,sd))/sqrt(nrow(len.param)) df.len3=data.frame(dim,apply(len.param,2,mean),apply(len.naive,2,mean),apply(len.vfcp,2,mean),apply(len.star,2,mean),apply(len.cv5,2,mean), apply(len.efcp,2,mean)) df.len3_sd=data.frame(dim,apply(len.param,2,sd),apply(len.naive,2,sd),apply(len.vfcp,2,sd),apply(len.star,2,sd),apply(len.cv5,2,sd), apply(len.efcp,2,sd))/sqrt(nrow(len.param)) data(ridge_linear_cov100_t5,package = "ConformalSmallest") data(ridge_linear_len100_t5,package = "ConformalSmallest") dim=ridge_linear_cov100_t5[[1]] cov.param_linear_fm_t5=ridge_linear_cov100_t5[[2]] cov.naive_linear_fm_t5=ridge_linear_cov100_t5[[3]] cov.vfcp_linear_fm_t5=ridge_linear_cov100_t5[[4]] cov.star_linear_fm_t5=ridge_linear_cov100_t5[[5]] cov.cv5_linear_fm_t5=ridge_linear_cov100_t5[[6]] cov.efcp_linear_fm_t5=ridge_linear_cov100_t5[[7]] len.param_linear_fm_t5=ridge_linear_len100_t5[[1]] len.naive_linear_fm_t5=ridge_linear_len100_t5[[2]] len.vfcp_linear_fm_t5=ridge_linear_len100_t5[[3]] len.star_linear_fm_t5=ridge_linear_len100_t5[[4]] len.cv5_linear_fm_t5=ridge_linear_len100_t5[[5]] len.efcp_linear_fm_t5=ridge_linear_len100_t5[[6]] len.param = len.param_linear_fm_t5/len.vfcp_linear_fm_t5 len.naive = len.naive_linear_fm_t5/len.vfcp_linear_fm_t5 len.star = len.star_linear_fm_t5/len.vfcp_linear_fm_t5 len.cv5 = len.cv5_linear_fm_t5/len.vfcp_linear_fm_t5 len.efcp = len.efcp_linear_fm_t5/len.vfcp_linear_fm_t5 len.vfcp = len.vfcp_linear_fm_t5/len.vfcp_linear_fm_t5 df.cov5=data.frame(dim,apply(cov.param_linear_fm_t5,2,mean),apply(cov.naive_linear_fm_t5,2,mean),apply(cov.vfcp_linear_fm_t5,2,mean),apply(cov.star_linear_fm_t5,2,mean),apply(cov.cv5_linear_fm_t5,2,mean), apply(cov.efcp_linear_fm_t5,2,mean)) df.cov5_sd=data.frame(dim,apply(cov.param_linear_fm_t5,2,sd),apply(cov.naive_linear_fm_t5,2,sd),apply(cov.vfcp_linear_fm_t5,2,sd),apply(cov.star_linear_fm_t5,2,sd),apply(cov.cv5_linear_fm_t5,2,sd), apply(cov.efcp_linear_fm_t5,2,sd))/sqrt(nrow(len.param)) df.len5=data.frame(dim,apply(len.param,2,mean),apply(len.naive,2,mean),apply(len.vfcp,2,mean),apply(len.star,2,mean),apply(len.cv5,2,mean), apply(len.efcp,2,mean)) df.len5_sd=data.frame(dim,apply(len.param,2,sd),apply(len.naive,2,sd),apply(len.vfcp,2,sd),apply(len.star,2,sd),apply(len.cv5,2,sd), apply(len.efcp,2,sd))/sqrt(nrow(len.param)) bgnd <- theme_get()$panel.background$fill names=c("Linear","Naive","VFCP","CV*","CV-5-fold","EFCP") #colors_manual=c("blue","#FF9933","#999000","66FFCC","#66CC99","#9999FF","#FF00CC") colors_manual=c("red","slategrey","darkorchid3","dodgerblue4","turquoise3","grey23") shape_manual=c(0,1,2,3,4,5) seq=seq(2,60,by=2) col_names=c("dim","cov.param","cov.naive","cov.vfcp","cov.star","cov.cv5","cov.efcp") names(df.cov3)=names(df.cov5)=names(df.cov3_sd)=names(df.cov5_sd)=col_names col_names=c("dim","len.param","len.naive","len.vfcp","len.star","len.cv5","len.efcp") names(df.len3)=names(df.len5)=names(df.len3_sd)=names(df.len5_sd)=col_names df.cov = rbind(df.cov3[seq,], df.cov5[seq,]) df.cov_sd = rbind(df.cov3_sd[seq,], df.cov5_sd[seq,]) df.len = rbind(df.len3[seq,], df.len5[seq,]) df.len_sd = rbind(df.len3_sd[seq,], df.len5_sd[seq,]) ## ----ggplot parameters-------------------------------------------------------- Moment = c("3rd moment", "5th moment") df_names = expand.grid(seq,Moment,names) cov_vec = as.vector(as.matrix(df.cov[,-1])) cov_sd_vec = as.vector(as.matrix(df.cov_sd[,-1])) cov = cbind(df_names[,1], cov_vec, cov_sd_vec , df_names[,-1] ) len_vec = as.vector(as.matrix(df.len[,-1])) len_sd_vec = as.vector(as.matrix(df.len_sd[,-1])) len = cbind(df_names[,1], len_vec, len_sd_vec , df_names[,-1]) cov$Var="Coverage" len$Var = "Width ratio" colnames(cov) = c("V1","V2","sd","Moment","Method","Var") colnames(len) = c("V1","V2","sd","Moment","Method","Var") ## ----ggplot------------------------------------------------------------------- data_linear_fm=rbind(cov,len) dummy_coverage <- data.frame(Var=c("Coverage"),Z= 0.9) ggplot_linear_fm=ggplot(data=data_linear_fm, aes(x=V1, y=V2, group=Method,color=Method)) + geom_errorbar(aes(ymin=V2-sd, ymax=V2+sd), width=.1)+ geom_line(size = 0.8, aes(color=Method))+ #,linetype=Method)) + #geom_point(size=5, colour=bgnd)+ #geom_point(aes(shape=Method,color=Method)) + theme(#axis.text.y = element_blank(), #axis.ticks.y = element_blank(), axis.title.y = element_blank(), #plot.title = element_text(size = 8,hjust=0.5), #axis.text = element_text(size = 10), #axis.title =element_text(size = 10), legend.position="top") + facet_grid(Var~Moment,scales = "free")+ #scale_shape_manual(values=shape_manual) + scale_color_manual(values=colors_manual) + #ylim(0,1.2) + #xlab("dim") + ylab("Avg-Len") xlab("Dimension")+guides(shape=FALSE)+ theme(strip.text.x = element_text(size = 12, face = "bold"), strip.text.y = element_text(size=12, face="bold"), axis.ticks.length=unit(.25, "cm"),axis.title=element_text(size=12))+ geom_hline(data=dummy_coverage, aes(yintercept=Z), linetype="dashed") ggplot_linear_fm ## ----plot--------------------------------------------------------------------- library(repr) library(glmnet) library(MASS) library(mvtnorm) name=paste("linear_fm_t3",sep="") set.seed(2021) df <- 3 #degrees of freedom l <- 1 #number of dimensions l.lambda <- 100 lambda_seq <- seq(0,200,l=l.lambda) dim <- 5 alpha <- 0.1 n <- 200 #number of training samples n0 <- 100 #number of prediction points nrep <- 100 #number of independent trials rho <- 0.5 lambda.efcp <- lambda.vfcp <- lambda.star <- lambda.cv5 <- rep(0,nrep) for(i in 1:nrep){ for (r in 1:l){ d <- dim[r] set.seed(i) Sigma <- matrix(rho,d,d) diag(Sigma) <- rep(1,d) X <- rmvt(n,Sigma,df) #multivariate t distribution beta <- rep(1:5,d/5) eps <- rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2)) Y <- X%*%beta+eps X0 <- rmvt(n0,Sigma,df) eps0 <- rt(n0,df)*(1+sqrt(X0[,1]^2+X0[,2]^2)) Y0 <- X0%*%beta+eps0 out.efcp <- efcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) lambda.efcp[i] <- out.efcp$lambda out.vfcp <- vfcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) lambda.vfcp[i] <- out.vfcp$lambda out.star <- star.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha) lambda.star[i] <- out.star$lambda out.cv5 <- cv.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha,nfolds=5) lambda.cv5[i] <- out.cv5$lambda } } #options(repr.plot.width=18, repr.plot.height=6) #par(mar=c(1,1,1,1)) oldpar=par(mfrow=c(2,2)) hist(lambda.cv5,breaks=seq(min(lambda.cv5)-1,max(lambda.cv5)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="CV-2splits") #make x,y, values, main larger hist(lambda.star,breaks=seq(min(lambda.star)-1,max(lambda.star)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="CV-3splits") hist(lambda.efcp,breaks=seq(min(lambda.efcp)-1,max(lambda.efcp)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="EFCP") hist(lambda.vfcp,breaks=seq(min(lambda.vfcp)-1,max(lambda.vfcp)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="VFCP") ## ----nonlinear---------------------------------------------------------------- name=paste("nonlinear_fm_t3",sep="") set.seed(2021) df <- 3 #degrees of freedom l <- 1 #number of dimensions l.lambda <- 100 lambda_seq <- seq(0,200,l=l.lambda) dim <- 5 alpha <- 0.1 n <- 200 #number of training samples n0 <- 100 #number of prediction points nrep <- 100 #number of independent trials rho <- 0.5 lambda.efcp <- lambda.vfcp <- lambda.star <- lambda.cv5 <- rep(0,nrep) for(i in 1:nrep){ for (r in 1:l){ d <- dim[r] set.seed(i) Sigma=matrix(rho,d,d) diag(Sigma)=rep(1,d) X=rmvt(n,Sigma,df) #multivariate t distribution eps1=rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2)) eps2=rt(n,df)*(1+sqrt(X[,1]^4+X[,2]^4)) Y=rpois(n,sin(X[,1])^2 + cos(X[,2])^4+0.01 )+0.03*X[,1]*eps1+25*(runif(n,0,1)<0.01*eps2) X0=rmvt(n0,Sigma,df) eps01=rt(n0,df)*(1+sqrt(X0[,1]^2+X0[,2]^2)) eps02=rt(n0,df)*(1+sqrt(X0[,1]^4+X0[,2]^4)) Y0=rpois(n0,sin(X0[,1])^2 + cos(X0[,2])^4+0.01 )+0.03*X0[,1]*eps01+25*(runif(n0,0,1)<0.01)*eps02 out.efcp <- efcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) lambda.efcp[i] <- out.efcp$lambda out.vfcp <- vfcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha) lambda.vfcp[i] <- out.vfcp$lambda out.star <- star.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha) lambda.star[i] <- out.star$lambda out.cv5 <- cv.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha,nfolds=5) lambda.cv5[i] <- out.cv5$lambda } } #options(repr.plot.width=18, repr.plot.height=6) oldpar=par(mfrow=c(2,2)) #par(mar=c(1,1,1,1)) hist(lambda.cv5,breaks=seq(min(lambda.cv5)-1,max(lambda.cv5)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="CV-2splits") #make x,y, values, main larger hist(lambda.star,breaks=seq(min(lambda.star)-1,max(lambda.star)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="CV-3splits") hist(lambda.efcp,breaks=seq(min(lambda.efcp)-1,max(lambda.efcp)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="EFCP") hist(lambda.vfcp,breaks=seq(min(lambda.vfcp)-1,max(lambda.vfcp)+1, by = 2),xlab=expression(lambda), cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5,main="VFCP") par(oldpar)