## ----echo=FALSE--------------------------------------------------------------- knitr::opts_chunk$set(fig.width=7, fig.height=4) set.seed(0) ## ----libraryGauPro------------------------------------------------------------ library(GauPro) ## ----fitsine------------------------------------------------------------------ n <- 12 x <- seq(0, 1, length.out = n) y <- sin(6*x^.8) + rnorm(n,0,1e-1) gp <- gpkm(x, y) ## ----plotsine----------------------------------------------------------------- gp$plot1D() ## ----fit_dm------------------------------------------------------------------- library(ggplot2) diamonds_subset <- diamonds[sample(1:nrow(diamonds), 60), ] dm <- gpkm(price ~ carat + cut + color + clarity + depth, diamonds_subset) ## ----summary_dm--------------------------------------------------------------- summary(dm) ## ----plot_dm------------------------------------------------------------------ plot(dm) ## ----diamond_construct_kernel------------------------------------------------- cts_kernel <- k_IgnoreIndsKernel(k=k_PowerExp(D=2), ignoreinds = c(2,3,4)) factor_kernel2 <- k_OrderedFactorKernel(D=5, xindex=2, nlevels=nlevels(diamonds_subset[[2]])) factor_kernel3 <- k_OrderedFactorKernel(D=5, xindex=3, nlevels=nlevels(diamonds_subset[[3]])) factor_kernel4 <- k_GowerFactorKernel(D=5, xindex=4, nlevels=nlevels(diamonds_subset[[4]])) # Multiply them diamond_kernel <- cts_kernel * factor_kernel2 * factor_kernel3 * factor_kernel4 ## ----diamond_construct_kernel_fit--------------------------------------------- dm <- gpkm(price ~ carat + cut + color + clarity + depth, diamonds_subset, kernel=diamond_kernel) dm$plotkernel() ## ----combine seed, include=F-------------------------------------------------- set.seed(99) ## ----combine_periodic--------------------------------------------------------- x <- 1:20 y <- sin(x) + .1*x^1.3 combo_kernel <- k_Periodic(D=1) * k_Matern52(D=1) gp <- gpkm(x, y, kernel=combo_kernel, nug.min=1e-6) gp$plot() ## ----oldvignettedata---------------------------------------------------------- x <- seq(0,1,l=10) y <- abs(sin(2*pi*x))^.8 ggplot(aes(x,y), data=cbind(x,y)) + geom_point() ## ----oldvignettedata_plot----------------------------------------------------- ggplot(aes(x,y), data=cbind(x,y)) + geom_point() + stat_smooth(method='lm') ## ----oldvignettedata_gpkm----------------------------------------------------- library(GauPro) gp <- gpkm(x, y, kernel=k_Gaussian(D=1), parallel=FALSE) ## ----oldvignettedata_plot1D--------------------------------------------------- gp$plot1D() ## ----oldvignettedata_cool1Dplot----------------------------------------------- if (requireNamespace("MASS", quietly = TRUE)) { gp$cool1Dplot() } ## ----oldvignettedata_maternplot----------------------------------------------- kern <- k_Matern52(D=1) gpk <- gpkm(matrix(x, ncol=1), y, kernel=kern, parallel=FALSE) if (requireNamespace("MASS", quietly = TRUE)) { plot(gpk) } ## ----oldvignettedata_exponentialplot------------------------------------------ kern.exp <- k_Exponential(D=1) gpk.exp <- gpkm(matrix(x, ncol=1), y, kernel=kern.exp, parallel=FALSE) if (requireNamespace("MASS", quietly = TRUE)) { plot(gpk.exp) } ## ----oldvignettedata_trendplot------------------------------------------------ kern.exp <- k_Exponential(D=1) trend.0 <- trend_0$new() gpk.exp <- gpkm(matrix(x, ncol=1), y, kernel=kern.exp, trend=trend.0, parallel=FALSE) if (requireNamespace("MASS", quietly = TRUE)) { plot(gpk.exp) }