## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(ReSurv) library(ggplot2) ## ----eval=FALSE, include=TRUE------------------------------------------------- # # Input data # # input_data_0 <- data_generator( # random_seed = 1964, # scenario = "alpha", # time_unit = 1 / 360, # years = 4, # period_exposure = 200 # ) # ## ----eval=FALSE, include=TRUE------------------------------------------------- # input_data_0 %>% # as.data.frame() %>% # mutate(claim_type = as.factor(claim_type)) %>% # ggplot(aes(x = RT - AT, color = claim_type)) + # stat_ecdf(size = 1) + # labs(title = "Empirical distribution of simulated notification delays", x = # "Notification delay (in days)", y = "Cumulative Density") + # xlim(0, 1500) + # scale_color_manual( # values = c("royalblue", "#a71429"), # labels = c("Claim type 0", "Claim type 1") # ) + # scale_linetype_manual(values = c(1, 3), # labels = c("Claim type 0", "Claim type 1")) + # guides( # color = guide_legend(title = "Claim type", override.aes = list( # color = c("royalblue", "#a71429"), size = 2 # )), # linetype = guide_legend( # title = "Claim type", # override.aes = list(linetype = c(1, 3), size = 0.7) # ) # ) + # theme_bw() ## ----include=TRUE, eval =FALSE------------------------------------------------ # # input_data_1 <- data_generator( # random_seed = 1964, # scenario = 1, # time_unit = 1 / 360, # years = 4, # period_exposure = 200 # ) # ## ----eval=FALSE, include=TRUE------------------------------------------------- # input_data_1 %>% # as.data.frame() %>% # mutate(claim_type = as.factor(claim_type)) %>% # ggplot(aes(x = RT - AT, color = claim_type)) + # stat_ecdf(size = 1) + # labs(title = "Empirical distribution of simulated notification delays", x = # "Notification delay (in days)", y = "Cumulative Density") + # xlim(0, 1500) + # scale_color_manual( # values = c("royalblue", "#a71429"), # labels = c("Claim type 0", "Claim type 1") # ) + # scale_linetype_manual(values = c(1, 3), # labels = c("Claim type 0", "Claim type 1")) + # guides( # color = guide_legend(title = "Claim type", override.aes = list( # color = c("royalblue", "#a71429"), size = 2 # )), # linetype = guide_legend( # title = "Claim type", # override.aes = list(linetype = c(1, 3), size = 0.7) # ) # ) + # theme_bw() ## ----------------------------------------------------------------------------- # Input data input_data_2 <- data_generator( random_seed = 1964, scenario = 2, time_unit = 1 / 360, years = 4, period_exposure = 200 ) ## ----eval=FALSE, include=TRUE------------------------------------------------- # input_data_2 %>% # as.data.frame() %>% # mutate(claim_type = as.factor(claim_type)) %>% # ggplot(aes(x = RT - AT, color = claim_type)) + # stat_ecdf(size = 1) + # labs(title = "Empirical distribution of simulated notification delays", x = # "Notification delay (in days)", y = "Cumulative Density") + # xlim(0, 1500) + # scale_color_manual( # values = c("royalblue", "#a71429"), # labels = c("Claim type 0", "Claim type 1") # ) + # scale_linetype_manual(values = c(1, 3), # labels = c("Claim type 0", "Claim type 1")) + # guides( # color = guide_legend(title = "Claim type", override.aes = list( # color = c("royalblue", "#a71429"), size = 2 # )), # linetype = guide_legend( # title = "Claim type", # override.aes = list(linetype = c(1, 3), size = 0.7) # ) # ) + # theme_bw() ## ----------------------------------------------------------------------------- input_data_3 <- data_generator( random_seed = 1964, scenario = 3, time_unit = 1 / 360, years = 4, period_exposure = 200 ) ## ----eval=FALSE, include=TRUE------------------------------------------------- # input_data_3 %>% # as.data.frame() %>% # mutate(claim_type = as.factor(claim_type)) %>% # ggplot(aes(x = RT - AT, color = claim_type)) + # stat_ecdf(size = 1) + # labs(title = "Empirical distribution of simulated notification delays", x = # "Notification delay (in days)", y = "Cumulative Density") + # xlim(0, 1500) + # scale_color_manual( # values = c("royalblue", "#a71429"), # labels = c("Claim type 0", "Claim type 1") # ) + # scale_linetype_manual(values = c(1, 3), # labels = c("Claim type 0", "Claim type 1")) + # guides( # color = guide_legend(title = "Claim type", override.aes = list( # color = c("royalblue", "#a71429"), size = 2 # )), # linetype = guide_legend( # title = "Claim type", # override.aes = list(linetype = c(1, 3), size = 0.7) # ) # ) + # theme_bw() ## ----------------------------------------------------------------------------- # Input data input_data_4 <- data_generator( random_seed = 1964, scenario = 4, time_unit = 1 / 360, years = 4, period_exposure = 200 ) ## ----eval=FALSE, include=TRUE------------------------------------------------- # input_data_4 %>% # as.data.frame() %>% # mutate(claim_type = as.factor(claim_type)) %>% # ggplot(aes(x = RT - AT, color = claim_type)) + # stat_ecdf(size = 1) + # labs(title = "Empirical distribution of simulated notification delays", x = # "Notification delay (in days)", y = "Cumulative Density") + # xlim(0, 1500) + # scale_color_manual( # values = c("royalblue", "#a71429"), # labels = c("Claim type 0", "Claim type 1") # ) + # scale_linetype_manual(values = c(1, 3), # labels = c("Claim type 0", "Claim type 1")) + # guides( # color = guide_legend(title = "Claim type", override.aes = list( # color = c("royalblue", "#a71429"), size = 2 # )), # linetype = guide_legend( # title = "Claim type", # override.aes = list(linetype = c(1, 3), size = 0.7) # ) # ) + # theme_bw() #