## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- set.seed(12345) library(SuRF.vs) N=50 p=20 nzc=p/3 X=matrix(rnorm(N*p),N,p) beta=rnorm(nzc) fx=X[,seq(nzc)]%*%beta/3 hx=exp(fx) ty=rexp(N,hx) tcens=rbinom(n=N,prob=.3,size=1)# censoring indicator (1 or 0) Xo=NULL B=20 Alpha=1 fold=5 ncores=1 prop=0.1 C=3 alpha_u=0.2 alpha=seq(0.01,0.1,len=5) #binomial model XX=X[,1:2] f=1+XX%*%c(2,1.5) p=exp(f)/(1+exp(f)) y=rbinom(100,1,p) weights=FALSE family=stats::binomial(link="logit") surf_binary=SURF(Xo=X,y=y,X=NULL,fold=5,Alpha=1,prop=0.1,weights=weights,B=50,C=10,ncores=1,display.progress=TRUE,family=family,alpha_u=0.1,alpha=alpha) #linear regression y=1+XX%*%c(0.1,0.2) family=stats::gaussian(link="identity") surf_lm=SURF(Xo=X,y=y,X=NULL,fold=5,Alpha=1,prop=0.1,weights=weights,B=100,C=15,ncores=1,display.progress=TRUE,family=family,alpha_u=0.1,alpha=alpha) #cox proportional model y=cbind(time=ty,status=1-tcens) family=list(family="cox") surf_cox=SURF(Xo=X,y=y,X=NULL,fold=5,Alpha=1,prop=0.1,weights=FALSE,B=50,C=5,ncores=1,display.progress=TRUE,family=family,alpha_u=alpha_u,alpha=alpha)