## ----echo=FALSE--------------------------------------------------------------- knitr::opts_chunk$set(fig.width=6, fig.height=6) if (requireNamespace('data.table', quietly = TRUE)) { # don't multi-thread during CRAN checks data.table::setDTthreads(1) } ## ----------------------------------------------------------------------------- set.seed(52523) d <- data.frame( wt = 100*rnorm(100), stringsAsFactors = FALSE) WVPlots::PlotDistCountNormal(d,'wt','example') ## ----------------------------------------------------------------------------- WVPlots::PlotDistDensityNormal(d,'wt','example') ## ----------------------------------------------------------------------------- set.seed(34903490) x = rnorm(50) y = 0.5*x^2 + 2*x + rnorm(length(x)) frm = data.frame( x=x, y=y, yC=y>=as.numeric(quantile(y,probs=0.8)), stringsAsFactors = FALSE) frm$absY <- abs(frm$y) frm$posY = frm$y > 0 WVPlots::ScatterHist(frm, "x", "y", smoothmethod="lm", title="Example Linear Fit") ## ----------------------------------------------------------------------------- set.seed(34903490) y = abs(rnorm(20)) + 0.1 x = abs(y + 0.5*rnorm(20)) frm = data.frame( model=x, value=y, stringsAsFactors = FALSE) frm$costs=1 frm$costs[1]=5 frm$rate = with(frm, value/costs) frm$isValuable = (frm$value >= as.numeric(quantile(frm$value, probs=0.8))) gainx = 0.10 # get the top 10% most valuable points as sorted by the model # make a function to calculate the label for the annotated point labelfun = function(gx, gy) { pctx = gx*100 pcty = gy*100 paste("The top ", pctx, "% most valuable points by the model\n", "are ", pcty, "% of total actual value", sep='') } WVPlots::GainCurvePlotWithNotation(frm, "model", "value", title="Example Gain Curve with annotation", gainx=gainx,labelfun=labelfun) ## ----------------------------------------------------------------------------- set.seed(52523) d = data.frame( meas=rnorm(100), stringsAsFactors = FALSE) threshold = 1.5 WVPlots::ShadedDensity(d, "meas", threshold, tail="right", title="Example shaded density plot, right tail") ## ----------------------------------------------------------------------------- set.seed(34903490) frm = data.frame( x=rnorm(50), y=rnorm(50), stringsAsFactors = FALSE) frm$z <- frm$x+frm$y WVPlots::ScatterHistN(frm, "x", "y", "z", title="Example Joint Distribution") ## ----------------------------------------------------------------------------- set.seed(34903490) x = rnorm(50) y = 0.5*x^2 + 2*x + rnorm(length(x)) frm = data.frame( x = x, yC = y>=as.numeric(quantile(y,probs=0.8)), stringsAsFactors = FALSE) WVPlots::ROCPlot(frm, "x", "yC", TRUE, title="Example ROC plot")