WaveletLSTM: Wavelet Based LSTM Model

A wavelet-based LSTM model is a type of neural network architecture that uses wavelet technique to pre-process the input data before passing it through a Long Short-Term Memory (LSTM) network. The wavelet-based LSTM model is a powerful approach that combines the benefits of wavelet analysis and LSTM networks to improve the accuracy of predictions in various applications. This package has been developed using the algorithm of Anjoy and Paul (2017) and Paul and Garai (2021) <doi:10.1007/s00521-017-3289-9> <doi:10.1007/s00500-021-06087-4>.

Version: 0.1.0
Imports: caret, dplyr, caretForecast, tseries, stats, wavelets, TSLSTM
Published: 2023-04-06
DOI: 10.32614/CRAN.package.WaveletLSTM
Author: Dr. Ranjit Kumar Paul [aut], Dr. Md Yeasin [aut, cre]
Maintainer: Dr. Md Yeasin <yeasin.iasri at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: WaveletLSTM results


Reference manual: WaveletLSTM.pdf


Package source: WaveletLSTM_0.1.0.tar.gz
Windows binaries: r-devel: WaveletLSTM_0.1.0.zip, r-release: WaveletLSTM_0.1.0.zip, r-oldrel: WaveletLSTM_0.1.0.zip
macOS binaries: r-release (arm64): WaveletLSTM_0.1.0.tgz, r-oldrel (arm64): WaveletLSTM_0.1.0.tgz, r-release (x86_64): WaveletLSTM_0.1.0.tgz, r-oldrel (x86_64): WaveletLSTM_0.1.0.tgz


Please use the canonical form https://CRAN.R-project.org/package=WaveletLSTM to link to this page.