## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, warning = FALSE) ## ----load, message=FALSE, warning=FALSE, results="hide"----------------------- library(assignR) library(terra) ## ----boundary----------------------------------------------------------------- plot(naMap) ## ----isoscape, fig.width=7, fig.asp=0.45-------------------------------------- plot(d2h_lrNA) ## ----knownOrig_names---------------------------------------------------------- names(knownOrig$sites) names(knownOrig$samples) names(knownOrig$sources) ## ----knownOrig_sites, fig.width=6, fig.asp=0.6-------------------------------- plot(wrld_simpl) points(knownOrig$sites, col = "red") ## ----knownOrig_taxa----------------------------------------------------------- unique(knownOrig$samples$Taxon) ## ----birdData, fig.width=5, fig.asp=0.8--------------------------------------- Ll_d = subOrigData(taxon = "Lanius ludovicianus", mask = naMap) ## ----birdChains--------------------------------------------------------------- Ll_d$chains ## ----birdSources-------------------------------------------------------------- Ll_d$sources[,1:3] ## ----birdNoTrans, fig.width=5, fig.asp=0.8------------------------------------ Ll_d = subOrigData(taxon = "Lanius ludovicianus", mask = naMap, ref_scale = NULL) Ll_d$sources$H_cal ## ----calRaster, fig.width=6, fig.asp=0.8, out.width='90%'--------------------- d2h_Ll = calRaster(known = Ll_d, isoscape = d2h_lrNA, mask = naMap) ## ----samples------------------------------------------------------------------ id = letters[1:5] set.seed(123) d2H = rnorm(5, -110, 8) d2H.sd = runif(5, 1.5, 2.5) d2H_cal = rep("UT_H_1", 5) Ll_un = data.frame(id, d2H, d2H.sd, d2H_cal) print(Ll_un) ## ----refTrans----------------------------------------------------------------- Ll_un = refTrans(Ll_un, ref_scale = "OldEC.1_H_1") print(Ll_un) ## ----pdRaster, fig.width=6, fig.asp=0.6, out.width='95%'---------------------- Ll_prob = pdRaster(d2h_Ll, Ll_un) ## ----sums--------------------------------------------------------------------- global(Ll_prob[[1]], 'sum', na.rm = TRUE) ## ----Dp, fig.width=5, fig.asp=0.8, out.width='45%'---------------------------- Dp_d = subOrigData(taxon = "Danaus plexippus") d2h_Dp = calRaster(Dp_d, d2h_lrNA) ## ----srIso, fig.width=5, fig.asp=0.8, out.width='45%'------------------------- plot(sr_MI$weathered.mean) crs(sr_MI, describe = TRUE) crs(d2h_Dp$isoscape.rescale, describe = TRUE) ## ----isoStack----------------------------------------------------------------- Dp_multi = isoStack(d2h_Dp, sr_MI) lapply(Dp_multi, crs, describe = TRUE) ## ----Dp_unknown--------------------------------------------------------------- Dp_unk = data.frame("ID" = c("A", "B"), "d2H" = c(-86, -96), "Sr" = c(0.7089, 0.7375)) ## ----Dp_Honly, fig.width=5, fig.asp=0.6, out.width='85%'---------------------- Dp_pd_Honly = pdRaster(Dp_multi[[1]], Dp_unk[,-3]) ## ----Dp_multi, fig.width=5, fig.asp=0.6, out.width='85%'---------------------- Dp_pd_multi = pdRaster(Dp_multi, Dp_unk) ## ----polygons----------------------------------------------------------------- s1 = states[states$STATE_ABBR == "UT",] s2 = states[states$STATE_ABBR == "NM",] plot(naMap) plot(s1, col = c("red"), add = TRUE) plot(s2, col = c("blue"), add = TRUE) ## ----oddsRatio1--------------------------------------------------------------- s12 = rbind(s1, s2) oddsRatio(Ll_prob, s12) ## ----oddsRatio2--------------------------------------------------------------- pp1 = c(-112,40) pp2 = c(-105,33) pp12 = vect(rbind(pp1,pp2)) crs(pp12) = crs(naMap) oddsRatio(Ll_prob, pp12) ## ----wDist1, fig.width=5, fig.asp=0.8, out.width='45%'------------------------ # View the data plot(Ll_prob[[1]], main = names(Ll_prob)[1]) points(pp12[1], cex = 2) plot(Ll_prob[[2]], main = names(Ll_prob)[2]) points(pp12[2], cex = 2) ## ----wDist2, fig.width=5, fig.asp=0.8, out.width='45%'------------------------ wd = wDist(Ll_prob[[1:2]], pp12) c(wd)[c(1,2,4,6,8,10,12,14,16)] #only showing select columns for formatting! plot(wd) ## ----qtlRaster1, fig.width=5, fig.asp=0.8, out.width='45%'-------------------- qtlRaster(Ll_prob, threshold = 0.1) ## ----qtlRaster2, fig.width=5, fig.asp=0.8, out.width='45%'-------------------- qtlRaster(Ll_prob, threshold = 0.8, thresholdType = "prob") ## ----jointP, fig.width=5, fig.asp=0.8----------------------------------------- jointP(Ll_prob) ## ----unionP, fig.width=5, fig.asp=0.8----------------------------------------- Ll_up = unionP(Ll_prob) ## ----qtlRaster3, fig.width=5, fig.asp=0.8------------------------------------- qtlRaster(Ll_up, threshold = 0.1) ## ----QA1, warning=FALSE, results='hide'--------------------------------------- qa1 = QA(Ll_d, d2h_lrNA, valiStation = 8, valiTime = 4, by = 5, mask = naMap, name = "normal") ## ----plot.QA1, fig.width=4, fig.asp=1, out.width='45%'------------------------ plot(qa1) ## ----modraster, fig.width=5, fig.asp=0.8-------------------------------------- dv = values(d2h_lrNA[[1]]) dv = dv + rnorm(length(dv), 0, 15) d2h_fuzzy = setValues(d2h_lrNA[[1]], dv) plot(d2h_fuzzy) ## ----QA2, warning=FALSE, results='hide'--------------------------------------- d2h_fuzzy = c(d2h_fuzzy, d2h_lrNA[[2]]) qa2 = QA(Ll_d, d2h_fuzzy, valiStation = 8, valiTime = 4, by = 5, mask = naMap, name = "fuzzy") ## ----plot.QA2, fig.width=4, fig.asp=1, out.width='45%'------------------------ plot(qa1, qa2)