## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(ceas) ## ----data_custom_dir, eval=FALSE---------------------------------------------- # rep_list <- list.files("seahorse_data", pattern = "*.xlsx", full.names = TRUE) ## ----data--------------------------------------------------------------------- rep_list <- system.file("extdata", package = "ceas") |> list.files(pattern = "*.xlsx", full.names = TRUE) raw_data <- readxl::read_excel(rep_list[1], sheet = 2) knitr::kable(head(raw_data)) ## ----read_dataformat---------------------------------------------------------- seahorse_rates <- read_data(rep_list) knitr::kable(head(seahorse_rates)) ## ----norm_csv----------------------------------------------------------------- norm_csv <- system.file("extdata", package = "ceas") |> list.files(pattern = "norm.csv", full.names = TRUE) norm_csv exp_group_norm <- norm_csv[1] well_norm <- norm_csv[2] read.csv(exp_group_norm) |> knitr::kable(caption = "For normalizing by experimental group") read.csv(well_norm) |> head() |> knitr::kable(caption = "For normalizing by well") ## ----normalized_read---------------------------------------------------------- read_data( rep_list, norm = exp_group_norm, norm_column = "exp_group", norm_method = "self" ) |> head() |> knitr::kable() ## ----partition_data----------------------------------------------------------- partitioned_data <- partition_data(seahorse_rates) ## ----eval = FALSE------------------------------------------------------------- # partitioned_data <- partition_data( # seahorse_rates, # assay_types = list( # basal = "MITO", # uncoupled = "MITO", # maxresp = "MITO", # nonmito = "MITO", # no_glucose_glyc = "GLYCO", # glucose_glyc = "GLYCO", # max_glyc = "GLYCO" # ), # basal_tp = 3, # uncoupled_tp = 6, # maxresp_tp = 8, # nonmito_tp = 12, # no_glucose_glyc_tp = 3, # glucose_glyc_tp = 6, # max_glyc_tp = 8 # ) ## ----eval = FALSE------------------------------------------------------------- # partitioned_data <- partition_data( # seahorse_rates, # assay_types = list( # basal = "RefAssay", # uncoupled = "RefAssay", # maxresp = NA, # nonmito = "RefAssay", # no_glucose_glyc = "RefAssay", # glucose_glyc = "RefAssay", # max_glyc = NA # ), # basal_tp = 5, # uncoupled_tp = 10, # nonmito_tp = 12, # maxresp = NA, # no_glucose_glyc_tp = 1, # glucose_glyc_tp = 5, # max_glyc = NA # ) # ## ----eval = FALSE------------------------------------------------------------- # partitioned_data <- partition_data( # seahorse_rates, # assay_types = list( # basal = "MITO", # uncoupled = "MITO", # maxresp = "MITO", # nonmito = "MITO", # no_glucose_glyc = NA, # glucose_glyc = "MITO", # max_glyc = NA # ), # basal_tp = 3, # uncoupled_tp = 6, # maxresp_tp = 8, # nonmito_tp = 12, # no_glucose_glyc_tp = NA, # glucose_glyc_tp = 3, # max_glyc_tp = NA # ) ## ----eval = FALSE------------------------------------------------------------- # partitioned_data <- partition_data( # seahorse_rates, # assay_types = list( # basal = "RCR", # uncoupled = "RCR", # maxresp = "RCR," # nonmito = "RCR", # no_glucose_glyc = NA, # glucose_glyc = "GC", # max_glyc = "GC" # ), # basal_tp = 3, # uncoupled_tp = 6, # maxresp_tp = 8, # nonmito_tp = 12, # no_glucose_glyc = NA, # glucose_glyc_tp = 3, # max_glyc_tp = 9 # ) ## ----get_energetics----------------------------------------------------------- energetics <- get_energetics(partitioned_data, ph = 7.4, pka = 6.093, buffer = 0.10) ## ----bioscope_plot, fig.cap="Bioenergetic scope with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- bioscope <- bioscope_plot( energetics, model = "ols", sep_reps = FALSE ) bioscope ## ----bioscope_plot_lme, fig.cap="Bioenergetic scope based on a mixed-effects model with replicates as random effect", message = FALSE, out.width = "100%", fig.dim = c(5, 3), dpi = 120---- bioscope_plot(energetics, sep_reps = FALSE, model = "mixed") ## ----bioscope_plot_sep_reps, fig.cap="Bioenergetic scope with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- bioscope_plot(energetics, sep_reps = TRUE, model = "ols") ## ----ocr, fig.cap="OCR with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- ocr <- rate_plot( seahorse_rates, measure = "OCR", assay = "MITO", model = "ols", sep_reps = FALSE ) ocr ## ----ocr_lme, fig.cap="OCR based on mixed-effects model", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- rate_plot( seahorse_rates, measure = "OCR", assay = "MITO", model = "mixed", sep_reps = FALSE ) ## ----ocr_sep_reps, fig.cap="OCR with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- rate_plot( seahorse_rates, measure = "OCR", assay = "MITO", model = "ols", sep_reps = TRUE, linewidth = 1 ) ## ----ecar, fig.cap="ECAR with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- ecar <- rate_plot( seahorse_rates, measure = "ECAR", assay = "GLYCO", model = "ols", sep_reps = FALSE ) ecar ## ----ecar_lme, fig.cap="ECAR based on mixed-effects model", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- rate_plot( seahorse_rates, measure = "ECAR", assay = "GLYCO", model = "mixed", sep_reps = FALSE ) ## ----ecar_sep, fig.cap="ECAR with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- rate_plot( seahorse_rates, measure = "ECAR", assay = "GLYCO", model = "ols", sep_reps = TRUE, linewidth = 1 ) ## ----basal_glyc, fig.cap="JATP from basal glycolysis with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- basal_glyc <- atp_plot( energetics, basal_vs_max = "basal", glyc_vs_resp = "glyc", sep_reps = FALSE ) basal_glyc ## ----basal_resp, fig.cap="JATP from basal respiration with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- atp_plot( energetics, basal_vs_max = "basal", glyc_vs_resp = "resp", model = "ols", sep_reps = TRUE ) ## ----max_glyc, fig.cap="JATP from maximal glycolysis with a mixed-effects model", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- atp_plot( energetics, basal_vs_max = "max", glyc_vs_resp = "glyc", model = "mixed", sep_reps = FALSE ) ## ----max_resp, fig.cap="JATP from maximal respiration replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120---- atp_plot( energetics, basal_vs_max = "max", glyc_vs_resp = "resp", model = "ols", sep_reps = TRUE ) ## ----custom_colors, out.width = "100%", fig.dim = c(5, 3), dpi = 120---------- custom_colors <- c("#e36500", "#b52356", "#3cb62d", "#328fe1") ## ----, out.width = "100%", fig.dim = c(5, 3), dpi = 120----------------------- bioscope + ggplot2::scale_color_manual( values = custom_colors ) ## ----out.width = "100%", fig.dim = c(5, 3), dpi = 120------------------------- ocr + ggplot2::scale_color_manual( values = custom_colors ) ## ----out.width = "100%", fig.dim = c(5, 3), dpi = 120------------------------- ecar + ggplot2::labs(x = "Time points") ## ----out.width = "100%", fig.dim = c(5, 3), dpi = 120------------------------- basal_glyc + ggplot2::theme(axis.text = ggplot2::element_text(size = 20)) ## ----eval = FALSE------------------------------------------------------------- # rate_plot ## ----results = 'asis', echo = FALSE------------------------------------------- func_code <- capture.output(dput(rate_plot)) cat("```r\n") cat(func_code, sep = "\n") cat("\n```") ## ----eval = FALSE------------------------------------------------------------- # edit(rate_plot)