## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(dtreg) ## ----------------------------------------------------------------------------- dt <- dtreg::load_datatype("https://doi.org/21.T11969/b9335ce2c99ed87735a6") ## ----------------------------------------------------------------------------- names(dt) ## ----------------------------------------------------------------------------- dtreg::show_fields(dt$group_comparison()) ## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, eval = FALSE, comment = "#>" ) ## ----------------------------------------------------------------------------- # labelled_inst <- dt$group_comparison(label = "my_test_results") ## ----------------------------------------------------------------------------- # method_url <- dt$software_method(has_support_url = "https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test") ## ----------------------------------------------------------------------------- # dimensions <- dt$matrix_size(number_of_rows = 50, # number_of_columns = 2) ## ----------------------------------------------------------------------------- # my_dataframe <- data.frame(W = 44.5, p = 2.2e-16) # output_dataframe <- dt$data_item(source_table = my_dataframe) ## ----------------------------------------------------------------------------- # class(my_dataframe$W) ## ----------------------------------------------------------------------------- # library(sets) # my_tuple <- sets::tuple(my_dataframe, "the Wilcoxon test results") # output_tuple <- dt$data_item(source_table = my_tuple) ## ----------------------------------------------------------------------------- # var_1 <- dt$component(label = "var_1") # var_2 <- dt$component(label = "var_2") # two_vars <- dt$group_comparison(targets = c(var_1, var_2)) ## ----------------------------------------------------------------------------- # two_vars <- dt$group_comparison(targets = c(dt$component(label = "var_1"), # dt$component(label = "var_2"))) ## ----------------------------------------------------------------------------- # software <- dt$software(label = "R", # versioninfo = "4.3.1") # # soft_library <- dt$software_library( # label = "stats::wilcoxon", # part_of = software, # versioninfo = "4.3.1", # has_support_url = "https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test" # ) # # soft_method <- dt$software_method( # label = "Wilcoxon rank sum test", # part_of = soft_library, # is_implemented_by = "stats::wilcox.test(versicolor$Petal.Length, virginica$Petal.Length)" # ) ## ----------------------------------------------------------------------------- # dimensions <- dt$matrix_size(number_of_rows = 50, # number_of_columns = 2) # input <- dt$data_item(label = "Iris: virginica and versicolor", # has_characteristic = dimensions, # source_url = # "https://search.r-project.org/CRAN/refmans/MVTests/html/iris.html") ## ----------------------------------------------------------------------------- # virginica <- dt$component(label = "petal length virginica") # versicolor <- dt$component(label = "petal length versicolor") ## ----------------------------------------------------------------------------- # df_result <- data.frame(W = 44.5, p = 2.2e-16) # output <- dt$data_item(source_table = df_result) ## ----------------------------------------------------------------------------- # wilcoxon_inst <- dt$group_comparison( # label = "Wilcoxon petal length, virginica vs versicolor", # executes = soft_method, # has_input = input, # targets = c(virginica, versicolor), # has_output = output # ) ## ----------------------------------------------------------------------------- # wilcoxon_json <- dtreg::to_jsonld(wilcoxon_instance) ## ----------------------------------------------------------------------------- # write(wilcoxon_json, "wilcoxon_file.json") ## ----------------------------------------------------------------------------- # library(dtreg) # dt <- # dtreg::load_datatype("https://doi.org/21.T11969/b9335ce2c99ed87735a6") # # software <- dt$software(label = "R", # versioninfo = "4.3.1") # soft_library <- dt$software_library( # label = "stats::wilcoxon", # part_of = software, # versioninfo = "4.3.1", # has_support_url = "https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test" # ) # soft_method <- dt$software_method( # label = "Wilcoxon rank sum test", # part_of = soft_library, # is_implemented_by = "stats::wilcox.test(versicolor$Petal.Length, virginica$Petal.Length)" # ) # dimensions <- dt$matrix_size(number_of_rows = 50, # number_of_columns = 2) # input <- dt$data_item(label = "Iris: virginica and versicolor", # has_characteristic = dimensions, # source_url = "https://search.r-project.org/CRAN/refmans/MVTests/html/iris.html") # virginica <- dt$component(label = "petal length virginica") # versicolor <- dt$component(label = "petal length versicolor") # df_result <- # data.frame(W = 44.5, # p = 2.2e-16, # stringsAsFactors = FALSE) # output <- dt$data_item(source_table = df_result) # wilcoxon_inst <- dt$group_comparison( # label = "Wilcoxon iris petal length, virginica vs versicolor", # executes = soft_method, # has_input = input, # targets = c(virginica, versicolor), # has_output = output # ) # # wilcoxon_json <- dtreg::to_jsonld(wilcoxon_inst) # write(wilcoxon_json, "wilcoxon_file.json")