## ----message=FALSE, warning=FALSE, include=FALSE------------------------------ library(knitr) knitr::opts_chunk$set( comment = ">", warning = FALSE, message = FALSE ) options(digits = 2) options(knitr.kable.NA = "") set.seed(333) ## ----------------------------------------------------------------------------- library(effectsize) ## ----------------------------------------------------------------------------- min_aov <- data.frame( Parameter = c("(Intercept)", "A", "B", "Residuals"), Sum_Squares = c(30, 40, 10, 100), df = c(1, 1, 2, 50) ) ## ----------------------------------------------------------------------------- .es_aov_simple( min_aov, type = "eta", partial = TRUE, generalized = FALSE, include_intercept = FALSE, ci = 0.95, alternative = "greater", verbose = TRUE ) ## ----------------------------------------------------------------------------- min_aovlist <- data.frame( Group = c("S", "S", "S:A", "S:A"), Parameter = c("(Intercept)", "Residuals", "A", "Residuals"), Sum_Squares = c(34, 21, 34, 400), df = c(1, 12, 4, 30) ) ## ----------------------------------------------------------------------------- .es_aov_strata( min_aovlist, DV_names = c("S", "A"), type = "omega", partial = TRUE, generalized = FALSE, ci = 0.95, alternative = "greater", verbose = TRUE, include_intercept = TRUE ) ## ----------------------------------------------------------------------------- min_anova <- data.frame( Parameter = c("(Intercept)", "A", "B"), F = c(4, 7, 0.7), df = c(1, 1, 2), df_error = 34 ) ## ----------------------------------------------------------------------------- .es_aov_table( min_anova, type = "eta", partial = TRUE, generalized = FALSE, include_intercept = FALSE, ci = 0.95, alternative = "greater", verbose = TRUE ) ## ----------------------------------------------------------------------------- mod <- lm(mpg ~ factor(cyl) + am, mtcars) class(mod) <- "superMODEL" ## ----------------------------------------------------------------------------- .anova_es.superMODEL <- function(model, ...) { # Get ANOVA table anov <- suppressWarnings(stats:::anova.lm(model)) anov <- as.data.frame(anov) # Clean up anov[["Parameter"]] <- rownames(anov) colnames(anov)[2:1] <- c("Sum_Squares", "df") # Pass out <- .es_aov_simple(anov, ...) # Set attribute attr(out, "anova_type") <- 1 out } ## ----echo=FALSE--------------------------------------------------------------- # This is for: https://github.com/easystats/easystats/issues/348 .anova_es.superMODEL <<- .anova_es.superMODEL ## ----------------------------------------------------------------------------- eta_squared(mod) eta_squared(mod, partial = FALSE) omega_squared(mod) # Etc...