About eodhdR2

R-CMD-check

eodhd is a private company that offers APIs to a set of comprehensive and high quality financial data for over 70+ exchanges across the world. This includes:

Package eodhdR2 is the second and backwards incompatible version of eodhd, allowing fast and intelligent access to most of the API’s endpoints.

Features

Installation

# available in CRAN
install.package("eodhdR2")

# development version
devtools::install_github("EodHistoricalData/R-Library-for-financial-data-2024")

Usage

Authentication

After registering in the eodhd website and choosing a subscription, all users will authenticate an R session using a token from the website. For that:

  1. Create an account at https://eodhd.com/
  2. Go in “Settings” and look for your API token

While using eodhdR2, all authentications are managed with function eodhdR2::set_token():

eodhdR2::set_token("YOUR_TOKEN")

Alternatively, while testing the API, you can use the “demo” token for demonstration.

token <- eodhdR2::get_demo_token()
eodhdR2::set_token(token)
#> ✔ eodhd API token set
#> ℹ Account name: API Documentation 2 (supportlevel1@eodhistoricaldata.com)
#> ℹ Quota: 63463 | 10000000
#> ℹ Subscription: demo
#> ✖ You are using a **DEMONSTRATION** token for testing pourposes, with
#> limited access to the data repositories. See <https://eodhd.com/>
#> for registration and, after finding your token, use it with
#> function eodhdR2::set_token("TOKEN").

Examples

Retrieving Financial Prices

ticker <- "AAPL"
exchange <- "US"

df_prices <- eodhdR2::get_prices(ticker, exchange)
#> 
#> ── retrieving price data for ticker AAPL|US ────────────────────────────────────
#> ! Quota status: 63463|10000000, refreshing in 5.8 hours
#> ℹ cache file AAPL_US_eodhd_prices.rds saved
#> ✔ got 11021 rows of prices
#> ℹ got daily data from 1980-12-12 to 2024-08-30

head(df_prices)
#>         date    open    high     low   close adjusted_close    volume ticker
#> 1 1980-12-12 28.7392 28.8736 28.7392 28.7392         0.0989 469033600   AAPL
#> 2 1980-12-15 27.3728 27.3728 27.2608 27.2608         0.0938 175884800   AAPL
#> 3 1980-12-16 25.3792 25.3792 25.2448 25.2448         0.0869 105728000   AAPL
#> 4 1980-12-17 25.8720 26.0064 25.8720 25.8720         0.0891  86441600   AAPL
#> 5 1980-12-18 26.6336 26.7456 26.6336 26.6336         0.0917  73449600   AAPL
#> 6 1980-12-19 28.2464 28.3808 28.2464 28.2464         0.0972  48630400   AAPL
#>   exchange ret_adj_close
#> 1       US            NA
#> 2       US   -0.05156724
#> 3       US   -0.07356077
#> 4       US    0.02531646
#> 5       US    0.02918070
#> 6       US    0.05997819
library(ggplot2)

p <- ggplot(df_prices, aes(y = adjusted_close, x = date)) + 
  geom_line() + 
  theme_light() + 
  labs(title = "Adjusted Prices of AAPL",
       subtitle = "Prices are adjusted to splits, dividends and other corporate events",
       x = "Data",
       y = "Adjusted Prices")

p

Retrieving Dividends

ticker <- "AAPL"
exchange <- "US"

df_div <- eodhdR2::get_dividends(ticker, exchange)
#> 
#> ── retrieving dividends for ticker AAPL|US ─────────────────────────────────────
#> ! Quota status: 63467|10000000, refreshing in 5.8 hours
#> ℹ cache file AAPL_US_eodhd_dividends.rds saved
#> ✔ got 84 rows of dividend data

head(df_div)
#>         date ticker exchange declarationDate recordDate paymentDate period
#> 1 1987-05-11   AAPL       US            <NA>       <NA>        <NA>   <NA>
#> 2 1987-08-10   AAPL       US            <NA>       <NA>        <NA>   <NA>
#> 3 1987-11-17   AAPL       US            <NA>       <NA>        <NA>   <NA>
#> 4 1988-02-12   AAPL       US            <NA>       <NA>        <NA>   <NA>
#> 5 1988-05-16   AAPL       US            <NA>       <NA>        <NA>   <NA>
#> 6 1988-08-15   AAPL       US            <NA>       <NA>        <NA>   <NA>
#>     value unadjustedValue currency
#> 1 0.00054         0.12096      USD
#> 2 0.00054         0.06048      USD
#> 3 0.00071         0.07952      USD
#> 4 0.00071         0.07952      USD
#> 5 0.00071         0.07952      USD
#> 6 0.00071         0.07952      USD
library(ggplot2)

p <- ggplot(df_div, aes(y = value, x = date)) + 
  geom_point(size = 1) + 
  theme_light() + 
  labs(title = "Adjusted Dividends of AAPL",
       x = "Data",
       y = "Adjusted Dividends")

p

Retrieving Fundamentals

ticker <- "AAPL"
exchange <- "US"

l_fun <- eodhdR2::get_fundamentals(ticker, exchange)
#> 
#> ── retrieving fundamentals for ticker AAPL|US ──────────────────────────────────
#> ! Quota status: 63469|10000000, refreshing in 5.8 hours
#> ✔ querying API
#> ✔ got 13 elements in raw list

names(l_fun)
#>  [1] "General"             "Highlights"          "Valuation"          
#>  [4] "SharesStats"         "Technicals"          "SplitsDividends"    
#>  [7] "AnalystRatings"      "Holders"             "InsiderTransactions"
#> [10] "ESGScores"           "outstandingShares"   "Earnings"           
#> [13] "Financials"

Parsing financials (wide table)

wide_financials <- eodhdR2::parse_financials(l_fun, "wide")
#> 
#> ── Parsing financial data for Apple Inc | AAPL ──
#> 
#> ℹ parsing Balance_Sheet  data
#> ℹ    quarterly
#> ℹ    yearly
#> ℹ parsing Cash_Flow  data
#> ℹ    quarterly
#> ℹ    yearly
#> ℹ parsing Income_Statement  data
#> ℹ    quarterly
#> ℹ    yearly
#> ✔ got 564 rows of financial data (wide format)

head(wide_financials)
#> # A tibble: 6 × 127
#>   date       filing_date ticker company_name frequency type_financial
#>   <date>     <date>      <chr>  <chr>        <chr>     <chr>         
#> 1 2024-06-30 2024-08-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 2 2024-03-31 2024-05-03  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 3 2023-12-31 2024-02-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 4 2023-09-30 2023-11-03  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 5 2023-06-30 2023-08-04  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 6 2023-03-31 2023-05-05  AAPL   Apple Inc    quarterly Balance_Sheet 
#> # ℹ 121 more variables: currency_symbol <chr>, totalAssets <dbl>,
#> #   intangibleAssets <dbl>, earningAssets <dbl>, otherCurrentAssets <dbl>,
#> #   totalLiab <dbl>, totalStockholderEquity <dbl>, deferredLongTermLiab <dbl>,
#> #   otherCurrentLiab <dbl>, commonStock <dbl>, capitalStock <dbl>,
#> #   retainedEarnings <dbl>, otherLiab <dbl>, goodWill <dbl>, otherAssets <dbl>,
#> #   cash <dbl>, cashAndEquivalents <dbl>, totalCurrentLiabilities <dbl>,
#> #   currentDeferredRevenue <dbl>, netDebt <dbl>, shortTermDebt <dbl>, …

Parsing financials (long table)

long_financials <- eodhdR2::parse_financials(l_fun, "long")
#> 
#> ── Parsing financial data for Apple Inc | AAPL ──
#> 
#> ℹ parsing Balance_Sheet  data
#> ℹ    quarterly
#> ℹ    yearly
#> ℹ parsing Cash_Flow  data
#> ℹ    quarterly
#> ℹ    yearly
#> ℹ parsing Income_Statement  data
#> ℹ    quarterly
#> ℹ    yearly
#> ✔ got 67680 rows of financial data (long format)

head(long_financials)
#> # A tibble: 6 × 9
#>   date       filing_date ticker company_name frequency type_financial
#>   <date>     <date>      <chr>  <chr>        <chr>     <chr>         
#> 1 2024-06-30 2024-08-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 2 2024-06-30 2024-08-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 3 2024-06-30 2024-08-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 4 2024-06-30 2024-08-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 5 2024-06-30 2024-08-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> 6 2024-06-30 2024-08-02  AAPL   Apple Inc    quarterly Balance_Sheet 
#> # ℹ 3 more variables: currency_symbol <chr>, name <chr>, value <dbl>