Processing math: 100%

paper_alg1

Algorithm 1 Estimating and Evaluating an Individualized Treatment Rule (ITR) using the Same Experimental Data via Cross-Validation

Steps in Algorithm 1 Function/object Output
1. Split data into K random subsets of equal size (Z1,,Zk) caret::createFolds() within estimate_itr() dataframe
2. k 1
3. while kK do for loop in fit_itr() within estimate_itr()
4. Zk=[Z1,,Zk1,Zk+1,,ZK] trainset object training data
5. ˆfk=F(Zk) modulized functions for each ML algoritms (e.g., run_causal_forest()) within estimate_itr() ITR (binary vector)
6. ˆτk=ˆτˆfk(Zk) compute_qoi() function within evaluate_itr() metrics for fold k
7. kk+1
8. end while
9.return ˆτF=1KKk=1ˆτk, ^V(ˆτF)=v(ˆf1,,ˆfk,Z1,,ZK) PAPEcv() PAPDcv() and getAupecOutput() functions inside compute_qoi() function within evaluate_itr() averaging the results across folds