The funStatTest
package implements various statistics
for two sample comparison testing regarding functional data.
Here are some functions used to simulate clustered trajectories of functional data based on the Karhunen-Loève decomposition.
The functional data simulation process is described in [1] (section 3.1).
simu_data <- simul_data(
n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
delta_shape = "constant", distrib = "normal"
)
str(simu_data)
#> List of 5
#> $ mat_sample1: num [1:100, 1:50] 10 10.1 10.2 10.3 10.4 ...
#> $ mat_sample2: num [1:100, 1:75] 0 0.00241 0.00497 0.00775 0.01071 ...
#> $ c_val : num 10
#> $ distrib : chr "normal"
#> $ delta_shape: chr "constant"
# constant delta
simu_data <- simul_data(
n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 5,
delta_shape = "constant", distrib = "normal"
)
plot_simu(simu_data)
The MO median statistic [1] is implemented in the stat_mo()
function.
The MED median statistic [1] is implemented in the
stat_med()
function.
The Wilcoxon-Mann-Whitney statistic [2]
(noted WMW in [1]) is implemented in the
stat_wmw()
function.
The Horváth-Kokoszka-Reeder statistics [3] (noted HKR1 and HKR2 in [1]) are implemented in the
stat_hkr()
function.
simu_data <- simul_data(
n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
delta_shape = "constant", distrib = "normal"
)
MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_hkr(MatX, MatY)
#> $T1
#> [1] 56962058560
#>
#> $T2
#> [1] 297023.2
#>
#> $eigenval
#> [1] 3.664005e+01 5.308985e+00 1.522118e+00 6.759658e-01 2.275435e-01
#> [6] 1.705847e-01 9.892918e-02 6.026029e-02 3.071646e-02 1.788522e-02
#> [11] 1.102164e-02 9.424057e-03 6.172824e-03 5.108395e-03 2.334137e-03
#> [16] 1.450027e-03 3.118851e-04 6.975138e-05 1.716764e-09
The Cuevas-Febrero-Fraiman statistic [4] (noted CFF in [1])
is implemented in the stat_cff()
function.
The function comp_stat()
allows to compute multiple
statistics defined above in a single call on the same data.
simu_data <- simul_data(
n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
delta_shape = "constant", distrib = "normal"
)
MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
res <- comp_stat(MatX, MatY, stat = c("mo", "med", "wmw", "hkr", "cff"))
res
#> $mo
#> [1] 0.9989056
#>
#> $med
#> [1] 0.9992861
#>
#> $wmw
#> [1] 0.9985099
#>
#> $hkr
#> [,1]
#> T1 5.132184e+10
#> T2 3.018523e+05
#>
#> $cff
#> [1] 511580.1
P-values associated to the different statistics defined above can be computed with the permutation-based method as follow:
# simulate small data for the example
simu_data <- simul_data(
n_point = 20, n_obs1 = 4, n_obs2 = 5, c_val = 10,
delta_shape = "constant", distrib = "normal"
)
MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
res <- permut_pval(
MatX, MatY, n_perm = 100, stat = c("mo", "med", "wmw", "hkr", "cff"),
verbose = TRUE)
res
#> $mo
#> [1] 0.01980198
#>
#> $med
#> [1] 0.01980198
#>
#> $wmw
#> [1] 0.01980198
#>
#> $hkr
#> T1 T2
#> 0.01980198 0.01980198
#>
#> $cff
#> [1] 0.01980198
:warning: computing p-values based on permutations may take some time (for large data or when using a large number of simulations. :warning:
We use our simulation scheme with permutation-based p-values computation to run a power analysis to evaluate the different statistics.
# simulate a few small data for the example
res <- power_exp(
n_simu = 20, alpha = 0.05, n_perm = 100,
stat = c("mo", "med", "wmw", "hkr", "cff"),
n_point = 25, n_obs1 = 4, n_obs2 = 5, c_val = 10, delta_shape = "constant",
distrib = "normal", max_iter = 10000, verbose = FALSE
)
res$power_res
#> $mo
#> [1] 1
#>
#> $med
#> [1] 1
#>
#> $wmw
#> [1] 1
#>
#> $hkr
#> T1 T2
#> 1 1
#>
#> $cff
#> [1] 1