mcmc: Markov Chain Monte Carlo

Simulates continuous distributions of random vectors using Markov chain Monte Carlo (MCMC). Users specify the distribution by an R function that evaluates the log unnormalized density. Algorithms are random walk Metropolis algorithm (function metrop), simulated tempering (function temper), and morphometric random walk Metropolis (Johnson and Geyer, 2012, <doi:10.1214/12-AOS1048>, function morph.metrop), which achieves geometric ergodicity by change of variable.

Version: 0.9-8
Depends: R (≥ 3.6.0)
Imports: stats
Suggests: xtable, Iso
Published: 2023-11-16
DOI: 10.32614/CRAN.package.mcmc
Author: Charles J. Geyer and Leif T. Johnson
Maintainer: Charles J. Geyer <geyer at>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: ChangeLog
In views: Bayesian
CRAN checks: mcmc results


Reference manual: mcmc.pdf
Vignettes: Bayes Factors via Serial Tempering
Debugging MCMC Code
MCMC Example
MCMC Morph Example


Package source: mcmc_0.9-8.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): mcmc_0.9-8.tgz, r-oldrel (arm64): mcmc_0.9-8.tgz, r-release (x86_64): mcmc_0.9-8.tgz, r-oldrel (x86_64): mcmc_0.9-8.tgz
Old sources: mcmc archive

Reverse dependencies:

Reverse imports: geommc, MCMCpack, nse, prefeR, ReliabilityTheory
Reverse suggests: ConnMatTools, fmcmc, MSGARCH


Please use the canonical form to link to this page.