## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo = FALSE------------------------------------------------------------- options(crayon.enabled = FALSE, cli.num_colors = 0) ## ----eval = FALSE------------------------------------------------------------- # library(metasnf) # # my_dl <- data_list( # list(cort_t, "cortical_thickness", "neuroimaging", "continuous"), # list(cort_sa, "cortical_area", "neuroimaging", "continuous"), # list(subc_v, "subcortical_volume", "neuroimaging", "continuous"), # list(income, "household_income", "demographics", "continuous"), # list(pubertal, "pubertal_status", "demographics", "continuous"), # uid = "unique_id" # ) # # set.seed(42) # sc <- snf_config( # my_dl, # n_solutions = 4, # max_k = 40 # ) # # sol_df <- batch_snf(my_dl, sc) ## ----eval = FALSE------------------------------------------------------------- # my_dl_subsamples <- subsample_dl( # my_dl, # n_subsamples = 100, # subsample_fraction = 0.85 # ) ## ----eval = FALSE------------------------------------------------------------- # batch_subsample_results <- batch_snf_subsamples( # my_dl_subsamples, # sc, # verbose = TRUE # ) ## ----eval = FALSE------------------------------------------------------------- # pairwise_aris <- subsample_pairwise_aris( # batch_subsample_results, # verbose = TRUE # ) ## ----eval = FALSE------------------------------------------------------------- # inter_ss_ari_hm <- ComplexHeatmap::Heatmap( # pairwise_aris$"raw_aris"$"s1", # heatmap_legend_param = list( # color_bar = "continuous", # title = "Inter-Subsample\nARI", # at = c(0, 0.5, 1) # ), # show_column_names = FALSE, # show_row_names = FALSE # ) ## ----eval = FALSE, echo = FALSE----------------------------------------------- # save_heatmap( # inter_ss_ari_hm, # "vignettes/inter_ss_ari_hm.png", # width = 400, # height = 300, # res = 70 # ) ## ----eval = FALSE------------------------------------------------------------- # coclustering_results <- calculate_coclustering( # batch_subsample_results, # sol_df, # verbose = TRUE # ) # # coclustering_results$"cocluster_summary" ## ----eval = FALSE------------------------------------------------------------- # cocluster_dfs <- coclustering_results$"cocluster_dfs" # # cocluster_density(cocluster_dfs[[1]]) ## ----eval = FALSE------------------------------------------------------------- # # Fraction of co-clustering between observations, grouped by original # # cluster membership # cocluster_heatmap( # cocluster_dfs[[1]], # dl = my_dl, # top_hm = list( # "Income" = "household_income", # "Pubertal Status" = "pubertal_status" # ), # annotation_colours = list( # "Pubertal Status" = colour_scale( # c(1, 4), # min_colour = "black", # max_colour = "purple" # ), # "Income" = colour_scale( # c(0, 4), # min_colour = "black", # max_colour = "red" # ) # ) # )