## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----fig.align='center', eval=FALSE------------------------------------------- # library(mlr3) # library(mlr3spatiotempcv) # task_st = tsk("cookfarm_mlr3") # task_st$set_col_roles("SOURCEID", roles = "space") # task_st$set_col_roles("Date", roles = "time") # resampling = rsmp("sptcv_cstf", folds = 5) # # pl = autoplot(resampling, task_st, c(1, 2, 3, 4), # crs = 4326, point_size = 3, axis_label_fontsize = 10, # plot3D = TRUE # ) # # # Warnings can be ignored # pl_subplot = plotly::subplot(pl) # # plotly::layout(pl_subplot, # title = "Individual Folds", # scene = list( # domain = list(x = c(0, 0.5), y = c(0.5, 1)), # aspectmode = "cube", # camera = list(eye = list(z = 2.5)) # ), # scene2 = list( # domain = list(x = c(0.5, 1), y = c(0.5, 1)), # aspectmode = "cube", # camera = list(eye = list(z = 2.5)) # ), # scene3 = list( # domain = list(x = c(0, 0.5), y = c(0, 0.5)), # aspectmode = "cube", # camera = list(eye = list(z = 2.5)) # ), # scene4 = list( # domain = list(x = c(0.5, 1), y = c(0, 0.5)), # aspectmode = "cube", # camera = list(eye = list(z = 2.5)) # ) # ) ## ----echo=FALSE, fig.align='center', fig.align='center'----------------------- # plotly::save_image(foo, "man/figures/sptcv_cstf_multiplot.png", width = 1200, height = 1200) knitr::include_graphics("../man/figures/sptcv_cstf_multiplot.png") ## ----echo=FALSE, cache=TRUE, fig.width=10, fig.height=8----------------------- library(patchwork) library(ggplot2) library(mlr3) library(mlr3spatiotempcv) task_ecuador = tsk("ecuador") task_cookfarm = tsk("cookfarm_mlr3") set.seed(42) # block resampling_block = rsmp("spcv_block", range = 1000L, folds = 3) p_block = autoplot(resampling_block, task_ecuador, fold_id = 1, show_blocks = TRUE, size = 0.6 ) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # buffer resampling_buffer = rsmp("spcv_buffer", theRange = 1000L) p_buffer = autoplot(resampling_buffer, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # coords resampling_coords = rsmp("spcv_coords", folds = 3) p_coords = autoplot(resampling_coords, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # env resampling_env = rsmp("spcv_env", folds = 3, features = "distroad") p_env = autoplot(resampling_env, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # disc resampling_disc = rsmp("spcv_disc", folds = 3L, radius = 200L, buffer = 200L) p_disc = autoplot(resampling_disc, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # tiles resampling_tiles = rsmp("spcv_tiles", nsplit = c(4L, 3L), reassign = FALSE) p_tiles = autoplot(resampling_tiles, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # plot p_block + p_coords + p_env + p_disc + p_tiles + p_buffer + plot_layout(ncol = 3) + plot_annotation(tag_levels = "A")