A d-dimensional stochastic differential equation (SDE) \boldsymbol{Y}_t = (Y_{1t}, \ldots, Y_{dt}) is written as \mathrm{d}\boldsymbol{Y}_t = \boldsymbol{\Lambda}_{\boldsymbol{\theta}}(\boldsymbol{Y}_t)\,\mathrm{d}t + \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\boldsymbol{Y}_t)^{1/2}\,\mathrm{d}\boldsymbol{B}_t, where \boldsymbol{\Lambda}_{\boldsymbol{\theta}}(\boldsymbol{y}) and \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\boldsymbol{y}) are the drift and diffusion functions, and \boldsymbol{B}_t = (B_{1t}, \ldots, B_{dt}) is d-dimensional Brownian motion. The msde package implements a Markov Chain Monte Carlo (MCMC) algorithm to sample from the posterior distribution p(\boldsymbol{\theta}\mid \boldsymbol{Y}) of the parameters given discrete observations \boldsymbol{Y}= (\boldsymbol{Y}_0, \ldots, \boldsymbol{Y}_N) recorded at times t_0, \ldots, t_N, with some of the d components of \boldsymbol{Y}_t possibly latent. To do this efficiently, msde requires on-the-fly C++ compiling of user-specified models. Instructions for setting up R to compile C++ code are provided in the Installation section.
sde.model
objectThe SDE model used throughout this vignette is the so-called Lotka-Volterra predator-prey model. Let H_t and L_t denote the number of Hare and Lynx at time t coexisting in a given habitat. The Lotka-Volterra SDE describing the interactions between these two animal populations is given by (Golightly and Wilkinson 2010): \begin{bmatrix} \mathrm{d} H_t \\ \mathrm{d} L_t \end{bmatrix} = \begin{bmatrix} \alpha H_t - \beta H_tL_t \\ \beta H_tL_t - \gamma L_t \end{bmatrix}\, \mathrm{d} t + \begin{bmatrix} \alpha H_t + \beta H_tL_t & -\beta H_tL_t \\ -\beta H_tL_t & \beta H_tL_t + \gamma L_t\end{bmatrix}^{1/2} \begin{bmatrix} \mathrm{d} B_{1t} \\ \mathrm{d} B_{2t} \end{bmatrix}. Thus we have d = 2, \boldsymbol{Y}_t = (H_t, L_t), and \boldsymbol{\theta}= (\alpha, \beta, \gamma).
sdeModel
class definitionIn order to build this model in C++, we create a header file lotvolModel.h
containing the class definition for an sdeModel
object. The basic structure of this class is given below:
// sde model object
class sdeModel {
public:
static const int nParams = 3; // number of model parameters
static const int nDims = 2; // number of sde dimensions
static const bool sdDiff = false; // whether diffusion function is on sd or var scale
static const bool diagDiff = false; // whether diffusion function is diagonal
void sdeDr(double *dr, double *x, double *theta); // drift function
void sdeDf(double *df, double *x, double *theta); // diffusion function
bool isValidParams(double *theta); // parameter validator
bool isValidData(double *x, double *theta); // data validator
};
The meaning of each class member is as follows:
nParams
: The number of model parameters. For the Lotka-Volterra model we have \boldsymbol{\theta}= (\alpha, \beta, \gamma), such that nParams = 3
.
nDims
: The number of dimensions in the multivariate SDE. In this case we have \boldsymbol{Y}_t = (H_t, L_t), such that nDims = 2
.
sdeDr
: The SDE drift function. In R, this function would be implemented as
function(x, theta) {
sde.drift <- c(theta[1]*x[1] - theta[2]*x[1]*x[2], # alpha * H - beta * H*L
dr <-2]*x[1]*x[2] - theta[3]*x[2]) # beta * H*L - gamma * L
theta[
dr }
In C++ the same thing is accomplished with
void sdeDr(double *dr, double *x, double *theta) {
0] = theta[0]*x[0] - theta[1]*x[0]*x[1]; // alpha * H - beta * H * L
dr[1] = theta[1]*x[0]*x[1] - theta[2]*x[1]; // beta * H * L - gamma * L
dr[return;
}
sdeDf
: The SDE diffusion function. This can be specified on the standard deviation scale, or on the variance scale as above. In this case, an R implementation would be
function(x, theta) {
sde.diff <- matrix(NA, 2, 2)
df <-1,1] <- theta[1]*x[1] + theta[2]*x[1]*x[2] # alpha * H + beta * H*L
df[1,2] <- -theta[2]*x[1]*x[2] # -beta * H*L
df[2,1] <- df[1,2] # -beta * H*L
df[2,2] <- theta[2]*x[1]*x[2] + theta[3]*x[2] # beta * H*L + gamma * L
df[
df }
In C++ the specification is slightly different. First we set sdDiff = false
in order to tell msde to use the variance scale. Next, the diffusion function is coded as
void sdeDf(double *df, double *x, double *theta) {
0] = theta[0]*x[0] + theta[1]*x[0]*x[1]; // matrix element (1,1)
df[2] = -theta[1]*x[0]*x[1]; // element (1,2)
df[3] = theta[1]*x[0]*x[1] + theta[2]*x[1]; // element (2,2)
df[return;
}
Thus there are two major differences with the R version. The first is that the df
matrix is stored as a vector (or “array” in C++). Its elements are stored in column-major order, i.e., by stacking the columns one after the other into one long vector. The second difference is that msde only uses the upper triangular portion of the (symmetric) matrix \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\boldsymbol{y}). The elements below the diagonal can be set to any value or not set at all without affecting the computations.
msde internally computes the Cholesky decomposition of the diffusion function when it is specified on the variance scale. For small problems such as this one, it is more efficient to specify the Cholesky decomposition directly, i.e., specify the diffusion on the standard deviation scale. In this case, the Cholesky decomposition of the diffusion function is
\begin{bmatrix} \alpha H_t + \beta H_tL_t & -\beta H_tL_t \\ -\beta H_tL_t & \beta H_tL_t + \gamma L_t\end{bmatrix}^{1/2} = \begin{bmatrix} \sqrt{\alpha H_t + \beta H_tL_t} & -\frac{\beta H_tL_t}{\sqrt{\alpha H_t + \beta H_tL_t}} \\ 0 & \sqrt{\beta H_tL_t + \gamma L_t - \frac{(\beta H_tL_t)^2}{\alpha H_t + \beta H_tL_t}} \end{bmatrix},
which is passed to msde by setting sdDiff = true
and
void sdeDf(double *df, double *x, double *theta) {
double bHL = theta[1]*x[0]*x[1]; // beta * H*L
0] = sqrt(theta[0]*x[0] + bHL); // sqrt(alpha * H + bHL)
df[2] = -bHL/df[0];
df[3] = sqrt(bHL + theta[2]*x[1] - df[2]*df[2]);
df[return;
}
diagDiff
: A logical specifying whether or not the diffusion matrix \boldsymbol{\Sigma}_\boldsymbol{\theta}(\boldsymbol{y}) is diagonal. For the Lotka-Volterra SDE model above, we set diagDiff = false
. However, if the diffusion function were of the form
\boldsymbol{\Sigma}_\boldsymbol{\theta}(\boldsymbol{Y}_t) = \begin{bmatrix} \alpha H_t + \beta H_tL_t & 0 \\ 0 & \beta H_tL_t + \gamma L_t\end{bmatrix},
then we would set diagDiff = true
, and importantly, treat the df
argument of sdeDf
directly as the diagonal elements of the diffusion matrix. That is, the diffusion (on the variance scale) is encoded as
void sdeDf(double *df, double *x, double *theta) {
double bHL = theta[1]*x[0]*x[1]; // beta * H*L
0] = theta[0]*x[0] + bHL; // alpha * H + bHL
df[// note the assignment to df[1] and not df[3]
1] = bHL + theta[2]*x[1]; // bHL + gamma * L
df[return;
}
NOTE: The msde C++ library does not initialize output pointers df
and dr
. So, if these contain zeros they must be assigned explicitly.
isValidParams
: A logical used to specify the parameter support. In this case we have \alpha, \beta, \gamma> 0, such that
bool isValidParams(double *theta) {
bool val = theta[0] > 0.0;
1] > 0.0;
val = val && theta[2] > 0.0;
val = val && theta[return val;
}
isValidData
: A logical used to specify the SDE support, which can be parameter-dependent. In this case we simply have H_t, L_t > 0, such that
bool isValidData(double *x, double *theta) {
return (x[0] > 0.0) && (x[1] > 0.0);
}
Thus the whole file lotvolModel.h
is given below:
#ifndef sdeModel_h
#define sdeModel_h 1
// Lotka-Volterra Predator-Prey model
// class definition
class sdeModel {
public:
static const int nParams = 3; // number of model parameters
static const int nDims = 2; // number of sde dimensions
static const bool diagDiff = false; // whether diffusion function is diagonal
static const bool sdDiff = true; // whether diffusion is on sd or var scale
void sdeDr(double *dr, double *x, double *theta); // drift function
void sdeDf(double *df, double *x, double *theta); // diffusion function
bool isValidParams(double *theta); // parameter validator
bool isValidData(double *x, double *theta); // data validator
};
// drift function
inline void sdeModel::sdeDr(double *dr, double *x, double *theta) {
0] = theta[0]*x[0] - theta[1]*x[0]*x[1]; // alpha * H - beta * H*L
dr[1] = theta[1]*x[0]*x[1] - theta[2]*x[1]; // beta * H*L - gamma * L
dr[return;
}
// diffusion function (sd scale)
inline void sdeModel::sdeDf(double *df, double *x, double *theta) {
double bHL = theta[1]*x[0]*x[1]; // beta * H*L
0] = sqrt(theta[0]*x[0] + bHL); // sqrt(alpha * H + bHL)
df[2] = -bHL/df[0];
df[3] = sqrt(bHL + theta[2]*x[1] - df[2]*df[2]);
df[return;
}
// parameter validator
inline bool sdeModel::isValidParams(double *theta) {
bool val = theta[0] > 0.0;
1] > 0.0;
val = val && theta[2] > 0.0;
val = val && theta[return val;
}
// data validator
inline bool sdeModel::isValidData(double *x, double *theta) {
return (x[0] > 0.0) && (x[1] > 0.0);
}
#endif
The additions to the previous code sections are:
#ifndef
/#define
/#endif
).sdeModel::
identifier is prepended to the class member definitions when these are written outside of the class declaration itself.inline
keyword before the class member definitions, both of which ensure that only one instance of these functions is passed to the C++ compiler.sde.model
objectOne the sdeModel
class is created as the C++ level, it is compiled in R using the following commands:
require(msde)
## Loading required package: msde
# put lotvolModel.h in the working directory
c("H", "L")
data.names <- c("alpha", "beta", "gamma")
param.names <- sde.make.model(ModelFile = "lotvolModel.h",
lvmod <-data.names = data.names,
param.names = param.names)
Before using the model for inference, it is useful to make sure that the C++ entrypoints are error-free. To facilitate this, msde provides R wrappers to the internal C++ drift, diffusion, and validator functions, which can then be checked against R versions as follows:
# helper functions
# random matrix of size nreps x length(x) from vector x
function(x, nreps) {
jit.vec <-apply(t(replicate(n = nreps, expr = x, simplify = "matrix")), 2, jitter)
}# maximum absolute and relative error between two arrays
function(x1, x2) {
max.diff <-c(abs = max(abs(x1-x2)), rel = max(abs(x1-x2)/max(abs(x1), 1e-8)))
}
# R sde functions
# drift and diffusion
function(x, theta) {
lv.drift <- c(theta[1]*x[1] - theta[2]*x[1]*x[2], # alpha * H - beta * H*L
dr <-2]*x[1]*x[2] - theta[3]*x[2]) # beta * H*L - gamma * L
theta[
dr
} function(x, theta) {
lv.diff <- matrix(NA, 2, 2)
df <-1,1] <- theta[1]*x[1] + theta[2]*x[1]*x[2] # alpha * H + beta * H*L
df[1,2] <- -theta[2]*x[1]*x[2] # -beta * H*L
df[2,1] <- df[1,2] # -beta * H*L
df[2,2] <- theta[2]*x[1]*x[2] + theta[3]*x[2] # beta * H*L + gamma * L
df[chol(df) # always use sd scale in R
}
# validators
function(x, theta) all(x > 0)
lv.valid.data <- function(theta) all(theta > 0)
lv.valid.params <-
# generate some test values
12
nreps <- c(H = 71, L = 79)
x0 <- c(alpha = .5, beta = .0025, gamma = .3)
theta0 <- jit.vec(x0, nreps)
X <- jit.vec(theta0, nreps)
Theta <-
# drift and diffusion check
# R versions
matrix(NA, nreps, lvmod$ndims) # drift
dr.R <- matrix(NA, nreps, lvmod$ndims^2) # diffusion
df.R <-for(ii in 1:nreps) {
lv.drift(x = X[ii,], theta = Theta[ii,])
dr.R[ii,] <-# flattens diffusion matrix into a row
c(lv.diff(x = X[ii,], theta = Theta[ii,]))
df.R[ii,] <-
}
# C++ versions
sde.drift(model = lvmod, x = X, theta = Theta)
dr.cpp <- sde.diff(model = lvmod, x = X, theta = Theta)
df.cpp <-
# compare
max.diff(dr.R, dr.cpp)
## abs rel
## 0 0
max.diff(df.R, df.cpp)
## abs rel
## 0 0
# validator check
# generate invalid data and parameters
X
X.bad <-c(1,3,5),1] <- -X.bad[c(1,3,5),1]
X.bad[ Theta
Theta.bad <-c(2,4,6),3] <- -Theta.bad[c(2,4,6),3]
Theta.bad[
# R versions
rep(NA, nreps)
x.R <- rep(NA, nreps)
theta.R <-for(ii in 1:nreps) {
lv.valid.data(x = X.bad[ii,], theta = Theta.bad[ii,])
x.R[ii] <- lv.valid.params(theta = Theta.bad[ii,])
theta.R[ii] <-
}
# C++ versions
sde.valid.data(model = lvmod, x = X.bad, theta = Theta.bad)
x.cpp <- sde.valid.params(model = lvmod, theta = Theta.bad)
theta.cpp <-
# compare
c(x = all(x.R == x.cpp), theta = all(theta.R == theta.cpp))
## x theta
## TRUE TRUE
The basis for both simulation and inference with SDEs is the Euler-Maruyama approximation (Maruyama 1955), which states that over a small time interval \Delta t, the (intractable) transition density of the SDE can be approximated by
\boldsymbol{Y}_{t+\Delta t} \mid \boldsymbol{Y}_t \approx \mathcal{N}\Big(\boldsymbol{Y}_t + \boldsymbol{\Lambda}_\boldsymbol{\theta}(\boldsymbol{Y}_t)\Delta t, \boldsymbol{\Sigma}_\boldsymbol{\theta}(\boldsymbol{Y}_t)\Delta t\Big),
with convergence to the true SDE dynamics as \Delta t\to 0.
In order to simulate data from the Lotka-Volterra SDE model, we use the function sde.sim()
. Here we’ll generate N = 50 observations of the process with initial values \boldsymbol{Y}_0 = (71, 79), and parameter values \boldsymbol{\theta}= (.5, .0025,.3), with time between observations of \Delta t= 1 year. The dt.sim
argument to sde.sim()
specifies the internal observation time used by the Euler-Maruyama approximation.
# simulation parameters
c(alpha = .5, beta = .0025, gamma = .3) # true parameter values
theta0 <- c(H = 71, L = 79) # initial SDE values
x0 <- 50 # number of observations
N <- 1 # time between observations (years)
dT <-
# simulate data
sde.sim(model = lvmod, x0 = x0, theta = theta0,
lvsim <-nobs = N-1, # N-1 steps forward
dt = dT,
dt.sim = dT/100) # internal observation time
## Number of normal draws required: 4900
## Running simulation...
## Execution time: 0 seconds.
## Bad Draws = 0
# plot data
rbind(c(x0), lvsim$data) # include first observation
Xobs <- (1:N-1)*dT # observation times
tseq <- c("black", "red")
clrs <-par(mar = c(4, 4, 1, 0)+.1)
plot(x = 0, type = "n", xlim = range(tseq), ylim = range(Xobs),
xlab = "Time (years)", ylab = "Population")
lines(tseq, Xobs[,"H"], type = "o", pch = 16, col = clrs[1])
lines(tseq, Xobs[,"L"], type = "o", pch = 16, col = clrs[2])
legend("topleft", legend = c("Hare", "Lynx"), fill = clrs)
Parameter inference is conducted used a well-known data augmentation scheme due to Pedersen (1995). Assume that, as above, the SDE observations are evenly spaced with interobservation time \Delta t. For any integer m > 0, let \boldsymbol{Y}_{(m)} = (\boldsymbol{Y}_{m,0}, \ldots, \boldsymbol{Y}_{m,Nm}) denote the value of the SDE at equally spaced intervals of \Delta t_m = \Delta t/m. Thus, \boldsymbol{Y}_{(1)} = \boldsymbol{Y} corresponds to the observed data, and for m > 1, we have \boldsymbol{Y}_{m,nm} = \boldsymbol{Y}_n. Thus we shall refer to the “missing data” as \boldsymbol{Y}_{\mathrm{miss}}= \boldsymbol{Y}_{(m)} \setminus \boldsymbol{Y}. The Euler-Maruyama approximation to the complete likelihood is
\mathcal L(\boldsymbol{\theta}\mid \boldsymbol{Y}_{(m)}) = \prod_{n=0}^{Nm-1} \varphi\Big(\boldsymbol{Y}_{m,n+1} \mid \boldsymbol{Y}_{m,n} + \boldsymbol{\Lambda}_\boldsymbol{\theta}(\boldsymbol{Y}_{m,n})\Delta t_m, \boldsymbol{\Sigma}_\boldsymbol{\theta}(\boldsymbol{Y}_{m,n}\Delta t)\Big),
where \varphi(\boldsymbol{y}\mid \mathbf \mu, \mathbf \Sigma) is the PDF of \boldsymbol{y}\sim \mathcal{N}(\mathbf \mu, \mathbf \Sigma). The Bayesian data augmentation scheme then consists of chosing a prior \pi(\boldsymbol{\theta}) and sampling from the posterior distribution
p_m(\boldsymbol{\theta}\mid \boldsymbol{Y}) = \int \mathcal L(\boldsymbol{\theta}\mid \boldsymbol{Y}_{(m)}) \times \pi(\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{Y}_{\mathrm{miss}}.
As m \to \infty this approximate posterior converges to the true SDE posterior p(\boldsymbol{\theta}\mid \boldsymbol{Y}).
Posterior sampling from the Euler-Maruyama posterior is accomplished with the function sde.post()
. In the following example we use m = 1, i.e., there is no missing data. We’ll use a Lebesgue prior \pi(\boldsymbol{\theta}) \propto 1; more information on the default and custom prior specifications can be found in the following sections.
# initialize the posterior sampler
sde.init(model = lvmod, x = Xobs, dt = dT,
init <-m = 1, theta = c(.1, .1, .1))
2e4
nsamples <- 2e3
burn <- sde.post(model = lvmod, init = init,
lvpost <-hyper = NULL, #prior specification
nsamples = nsamples, burn = burn)
## Output size:
## params = 60000
## Running posterior sampler...
## Execution time: 0.17 seconds.
## alpha accept: 43.9%
## beta accept: 43.1%
## gamma accept: 44%
# posterior histograms
expression(alpha, beta, gamma)
tnames <-par(mfrow = c(1,3))
for(ii in 1:lvmod$nparams) {
hist(lvpost$params[,ii], breaks = 25, freq = FALSE,
xlab = tnames[ii],
main = parse(text = paste0("p[1](", tnames[ii], "*\" | \"*bold(Y))")))
# superimpose true parameter value
abline(v = theta0[ii], lwd = 4, lty = 2)
}
sde.init()
In the example above there was no missing data, i.e., m = 1 and both components of the SDE are observed at each time t_0, \ldots, t_N. In order to refine the Euler-Maruyama approximation, we simply pass a larger value of m to sde.init()
:
# 3 missing data points between each observation, so dt_m = dt/4
4
m <- sde.init(model = lvmod, x = Xobs, dt = dT,
init <-m = m, theta = c(.1, .1, .1))
We can also assume that only the first q < d components of the SDE are observed, with the last d-q being latent. In this case with q = 1, the lynx population would be unobserved, and this is specified with the nvar.obs
argument:
sde.init(model = lvmod, x = Xobs, dt = dT,
init <-nvar.obs = 1, # number of "observed" variables per timepoint
m = m, theta = c(.1, .1, .1))
Note that the initial data x
must still be supplied as an (N+1) \times d matrix, with the missing values corresponding to initial values for the MCMC sampler.
Since msde allows for some of the q components of \boldsymbol{Y}_t to be latent, a prior must be specified not only for \boldsymbol{\theta} but also for the latent variables in the initial observation \boldsymbol{Y}_0.
In the example above, we assumed a Lebesgue prior \pi(\boldsymbol{\theta}, \boldsymbol{Y}_0) \propto 1, with the restriction that \boldsymbol{\theta}, \boldsymbol{Y}_0 > 0 (as specified in the sdeModel
class definition via the isValidData
and isValidParams
validators).
The default prior in msde is a multivariate normal, for which the (fixed) hyper-parameters are supplied via the hyper
argument to sde.post()
. The hyper
argument can either be NULL
, or a list with elements mu
and Sigma
. These consist of a named vector named matrix specifying the mean and variance of the named elements. Unnamed elements are given a Lebesgue prior. So for example, posterior inference for the dataset above with m = 1, latent variable L, and prior distribution
L_0, \alpha, \gamma \stackrel{\mathrm{iid}}{\sim}\mathcal{N}(1, 1), \qquad \pi(H_0, \beta \mid H_0, \alpha, \gamma) \propto 1
is obtained as follows:
# prior specification
c("L", "alpha", "gamma")
pnames <- list(mu = rep(1, 3), Sigma = diag(3))
hyper <-names(hyper$mu) <- pnames
dimnames(hyper$Sigma) <- list(pnames, pnames)
# initialize the posterior sampler
sde.init(model = lvmod, x = Xobs, dt = dT,
init <-m = 1, nvar.obs = 1, # L is latent
theta = c(.1, .1, .1))
2e4
nsamples <- 2e3
burn <- sde.post(model = lvmod, init = init,
lvpost <-hyper = hyper, #prior specification
nsamples = nsamples, burn = burn)
## Output size:
## params = 60000
## data = 2e+05
## Running posterior sampler...
## Execution time: 0.47 seconds.
## Bridge accept: min = 0.0182%, avg = 41.1%
## alpha accept: 44.2%
## beta accept: 44%
## gamma accept: 43.5%
## L0 accept: 98.7%
# posterior histograms
expression(alpha, beta, gamma)
tnames <-par(mfrow = c(1,3))
for(ii in 1:lvmod$nparams) {
hist(lvpost$params[,ii], breaks = 25, freq = FALSE,
xlab = tnames[ii],
main = parse(text = paste0("p[1](", tnames[ii], "*\" | \"*bold(Y))")))
# superimpose true parameter value
abline(v = theta0[ii], lwd = 4, lty = 2)
}
msde provides a two-stage mechanism for specifying user-defined priors. This is illustrated below with a simple log-normal prior on \boldsymbol{\eta}= (\alpha, \gamma, \beta, L_0) = (4_{\eta },\ldots,4_{)}, namely
\pi(\boldsymbol{\eta}) \iff \log(\eta_i) \stackrel{\mathrm{iid}}{\sim}\mathcal{N}(\mu_i, \sigma_i^2),
where the hyperparameters are \boldsymbol{\mu }= (4_{\mu },\ldots,4_{)} and \boldsymbol{\sigma }= (4_{\sigma },\ldots,4_{)}. Ultimately, the hyperparameters will be passed to sde.post()
as a two-element list, e.g.,
list(mu = c(0,0,0,0), sigma = c(1,1,1,1)) hyper <-
sdePrior
class definitionThe first step of the prior specification is to define it at the C++ level, through the sdPrior
class. The class corresponding to the log-normal prior above is defined in the file lotvolPrior.h
pasted below.
#ifndef sdePrior_h
#define sdePrior_h 1
#include <Rcpp.h> // contains R's dlnorm function
// Prior for Lotka-Volterra Model
class sdePrior {
private:
static const int nHyper = 4; // (alpha, beta, gamma, L)
double *mean, *sd; // log-normal mean and standard deviation vectors
public:
double logPrior(double *theta, double *x); // log-prior function
double **phi, int nArgs, int *nEachArg); // constructor
sdePrior(// destructor
~sdePrior();
};
// constructor
inline sdePrior::sdePrior(double **phi, int nArgs, int *nEachArg) {
// allocate memory for hyperparameters
new double[nHyper];
mean = new double[nHyper];
sd = // hard-copy hyperparameters into Prior object
for(int ii=0; ii<nHyper; ii++) {
0][ii];
mean[ii] = phi[1][ii];
sd[ii] = phi[
}
}
// destructor
inline sdePrior::~sdePrior() {
// deallocate memory to avoid memory leaks
delete [] mean;
delete [] sd;
}
// log-prior function itself:
// independent log-normal densities for (alpha,beta,gamma,L)
inline double sdePrior::logPrior(double *theta, double *x) {
double lpi = 0.0;
// alpha,beta,gamma
for(int ii=0; ii < 3; ii++) {
1);
lpi += R::dlnorm(theta[ii], mean[ii], sd[ii],
}// L
1], mean[3], sd[3], 1);
lpi += R::dlnorm(x[return lpi;
}
#endif
The meaning of each class member is as follows:
sdePrior
: The class constructor. This is how the C++ code collects the hyperparameters from R. Its argument signature must be matched exactly and has the following meaning:
phi
: A double-pointers of type double
. This is a simple mechanism to give the address of the elements of a list of numeric vectors, as the hyperparameters are defined on the R side. So with the example above, \sigma_2 is pointed to by phi[1][1]
.nArgs
: The number of elements in the hyperparameter vector, i.e., length(hyper)
, which in this case is 2. In this case this number is known in advance, but for greater flexibility it is determined at runtime automatically in the C++ code from the specific value of hyper
.nEachArg
: The length of each hyperparameter element, i.e., sapply(hyper, length)
. Again this is determined automatically from the C++ code. Note that for speed considerations, the contents of phi
should be copied directly into the sdePrior
object, held here in the private members mean
and sd
.~sdePrior
: The class destructor, which is needed to deallocate the dynamic memory to prevent memory leaks.logPrior
: The log-prior function itself, of which the signature must be matched exactly. Its arguments correspond to \boldsymbol{\theta} and \boldsymbol{Y}_0. In this case, we use the C++ version of R’s dlnorm
function, which is accessible by including Rcpp.h
.C++ is much less forgiving that R when it comes to accepting incorrect inputs. Thus, if a user accidently passed the hyperparameters to sde.post()
as e.g.,
list(mean = c(0,0,0,0)) bad.hyper <-
at best this would cause garbage MCMC output and at worst, the R session to terminate abruptly. For this reason msde provides an input-checking mechanism, which can also used to format the hyperparameters into the list-of-numeric-vectors input expected by the C++ code. This is done by passing an appropriate input checking function to sde.make.model()
through the argument hyper.check
. This argument accepts a function with the exact signature of the example below. In this example, hyper
must be a list with elements mu
and sigma
, which are either:
# must match argument signature _exactly_
function(hyper, param.names, data.names) {
lvcheck <-if(is.null(names(hyper)) ||
!identical(sort(names(hyper)), c("mu", "sigma"))) {
stop("hyper must be a list with elements mu and sigma.")
} hyper$mu
mu <-if(length(mu) == 1) mu <- rep(mu, 4)
if(!is.numeric(mu) || length(mu) != 4) {
stop("mu must be a numeric scalar or vector of length four.")
} hyper$sigma
sig <-if(length(sig) == 1) sig <- rep(sig, 4)
if(!is.numeric(sig) || length(sig) != 4 || !all(sig > 0)) {
stop("sigma must be a positive scalar or vector of length four.")
}list(mu, sig)
}#lvcheck <- mvn.hyper.check
Now we are ready to create the sde.model
object:
c("H", "L")
data.names <- c("alpha", "beta", "gamma")
param.names <- sde.make.model(ModelFile = "lotvolModel.h",
lvmod2 <-PriorFile = "lotvolPrior.h", # prior specification
hyper.check = lvcheck, # prior input checking
data.names = data.names,
param.names = param.names)
We can also test the C++ implementation of the prior against one written in R, using the msde function sde.prior()
.
# generate some test values
12
nreta <- c(H = 71, L = 79)
x0 <- c(alpha = .5, beta = .0025, gamma = .3)
theta0 <- jit.vec(x0, nreta)
X <- jit.vec(theta0, nreta)
Theta <- cbind(Theta, L = X[,"L"])
Eta <- 5
nrphi <- lapply(1:nrphi, function(ii) list(mu = rnorm(4), sigma = rexp(4)))
Phi <-
# prior check
# R version
matrix(NA, nreta, nrphi)
lpi.R <-for(ii in 1:nrphi) {
colSums(dlnorm(x = t(Eta),
lpi.R[,ii] <-meanlog = Phi[[ii]]$mu,
sdlog = Phi[[ii]]$sigma, log = TRUE))
}
# C++ version
matrix(NA, nreta, nrphi)
lpi.cpp <-for(ii in 1:nrphi) {
sde.prior(model = lvmod2, theta = Theta, x = X,
lpi.cpp[,ii] <-hyper = Phi[[ii]])
}
# compare
max.diff(lpi.R, lpi.cpp)
## abs rel
## 1.136868e-13 1.675965e-17
The msde package requires on-the-fly C++ compiling of user-specified models which is handled through the R package Rcpp (Eddelbuettel and François 2011).
Path
.xcode-select --install
. You can simply press “Install” without obtaining the entire Xcode suite.build-essential
and a recent version of g++ or clang++.To make sure the C++ compiler is set up correctly, install the Rcpp package and from within R run the following:
::cppFunction("double AddTest(double x, double y) {return x + y;}")
RcppAddTest(5.2, 3.4)
If the code compiles and outputs 8.6 then the C++ compiler is interfaced with R correctly.
It’s possible to speed up msde by a reasonable amount by passing a few flags to the C++ compiler. This can be done by creating a Makevars
file (or Makevars.win
on Windows). To do this, find your home folder by running the R command Sys.getenv("HOME")
, and in that folder create a subfolder called .R
containing the Makevars
file (if it doesn’t exist already). Now add the following lines to th .R/Makevars
file:
CXXFLAGS=-O3 -ffastmath
CXX=clang++
The first two options make the C++ code faster and the third uses the clang++ compiler instead of g++, which has better error messages (and is the default compiler on OS X).
On a multicore machine, msde can parallelize some of its computations with OpenMP directives. This can’t be done through R on Windows and is supported by default on recent versions of g++/clang++ on Linux. For OS X, the default version of clang++ does not support OpenMP but it is supported by that of the LLVM Project. This can be installed through Homebrew. After installing Homebrew using the instructions from the previous link, in Terminal run brew install llvm
. Then have R use LLVM’s clang++ compiler by setting the following in .R/Makevars
:
CXXFLAGS=-I/usr/local/opt/llvm/include -O3 -ffast-math
LDFLAGS=-L/usr/local/opt/llvm/lib
CXX=/usr/local/opt/llvm/bin/clang++
Note that these compiler directives alone will not enable OpenMP support. This happens at compile time by linking against -fopenmp
, which is done internally by msde.
Eddelbuettel, D. and François, R., 2011. Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40 (8), 1–18.
Golightly, A. and Wilkinson, D.J., 2010. Discussion of ‘Particle Markov chain Monte Carlo methods’ by Christophe Andrieu, Arnaud Doucet, Roman Holenstein. JRSS B, 59 (2), 341–357.
Maruyama, G., 1955. Continuous Markov processes and stochastic equations. Rendiconti del Circolo Matematico di Palermo, 4 (1), 48–90.
Pedersen, A.R., 1995. A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scandinavian Journal of Statistics, 22 (1), 55–71.