## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library("papaja") ## ----htest-example------------------------------------------------------------ t_test_example <- t.test(extra ~ group, data = sleep) class(t_test_example) str(t_test_example) ## ----apa-results, echo = FALSE------------------------------------------------ papaja:::init_apa_results() ## ----lm-example--------------------------------------------------------------- # Data from Dobson (1990), p. 9. ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14) trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69) group <- gl(2, 10, 20, labels = c("Ctl", "Trt")) weight <- c(ctl, trt) lm_fit <- lm(weight ~ group) lm_fit_apa <- apa_print(lm_fit) ## ----estimates---------------------------------------------------------------- lm_fit_apa$estimate ## ----statistic---------------------------------------------------------------- lm_fit_apa$statistic ## ----full-result-------------------------------------------------------------- lm_fit_apa$full_result ## ----table-------------------------------------------------------------------- lm_fit_apa$table ## ----variable-labels---------------------------------------------------------- # library("tinylabels") letters variable_label(letters) <- "Letters of the alphabet" variable_label(letters) letters str(letters) ## ----variable-label-column---------------------------------------------------- lm_fit_apa$table$statistic ## ----apa-num------------------------------------------------------------------ x <- rnorm(3) * 1e4 apa_num(x) apa_num(x, digits = 3, big.mark = ".", decimal.mark = ",") apa_num(Inf) ## ----apa-p-------------------------------------------------------------------- apa_p(c(0.0001, 0.05, 0.99999)) ## ----apa-df------------------------------------------------------------------- apa_df(c(12, 12.485)) apa_df(12L) ## ----apa-interval------------------------------------------------------------- apa_interval(rnorm(2), conf.int = 0.95, interval_type = "CI") ## ----apa-confint-------------------------------------------------------------- apa_confint(rnorm(2), conf.int = 0.95) apa_hdint(rnorm(2), conf.int = 0.95) ## ----sanitize-terms----------------------------------------------------------- mod_terms <- c("(Intercept)", "Factor A", "Factor B", "Factor A:Factor B", "scale(Factor A)") sanitize_terms(mod_terms, standardized = TRUE) ## ----prettify-terms----------------------------------------------------------- beautify_terms(mod_terms, standardized = TRUE) ## ----aov-fit------------------------------------------------------------------ npk_aov <- aov(yield ~ block + N * P * K, npk) npk_aov summary(npk_aov) ## ----apa-print-aov------------------------------------------------------------ papaja:::apa_print.aov ## ----tidy-results------------------------------------------------------------- lm_fit <- lm(mpg ~ cyl + wt, mtcars) # Tidy and typeset output library("broom") tidy_lm_fit <- tidy(lm_fit, conf.int = TRUE) tidy_lm_fit$p.value <- apa_p(tidy_lm_fit$p.value) tidy_lm_fit$conf.int <- unlist(apa_confint(tidy_lm_fit[, c("conf.low", "conf.high")])) str(tidy_lm_fit) glance_lm_fit <- glance(lm_fit) glance_lm_fit$r.squared <- apa_num(glance_lm_fit$r.squared, gt1 = FALSE) glance_lm_fit$p.value <- apa_p(glance_lm_fit$p.value) glance_lm_fit$df <- apa_df(glance_lm_fit$df) glance_lm_fit$df.residual <- apa_df(glance_lm_fit$df.residual) str(glance_lm_fit) ## ----construct-apa-results-labels--------------------------------------------- tidy_lm_fit <- apa_num(tidy_lm_fit) variable_labels(tidy_lm_fit) <- c( term = "Term" , estimate = "$b$" , statistic = paste0("$t(", glance_lm_fit$df.residual, ")") , p.value = "$p$" , conf.int = "95% CI" ) glance_lm_fit <- apa_num(glance_lm_fit) variable_labels(glance_lm_fit) <- c( r.squared = "$R^2$" , statistic = "$F$" , p.value = "$p$" , AIC = "$\\mathrm{AIC}$" ) ## ----glue--------------------------------------------------------------------- papaja:::construct_glue(tidy_lm_fit, "estimate") ## ----construct-apa-results---------------------------------------------------- lm_results <- glue_apa_results( x = tidy_lm_fit , est_glue = papaja:::construct_glue(tidy_lm_fit, "estimate") , stat_glue = papaja:::construct_glue(tidy_lm_fit, "statistic") , term_names = sanitize_terms(tidy_lm_fit$term) ) lm_results ## ----amend-apa-results-------------------------------------------------------- add_glue_to_apa_results( .x = glance_lm_fit , container = lm_results , sublist = "modelfit" , est_glue = c( r2 = "$<> = <>$" , aic = "" ) , stat_glue = c( r2 = papaja:::construct_glue(glance_lm_fit, "statistic") , aic = "$<> = <>$" ) ) ## ----------------------------------------------------------------------------- in_paren <- TRUE papaja:::validate(in_paren, check_class = "logical", check_length = 1)