sentometrics: An Integrated Framework for Textual Sentiment Time Series Aggregation and Prediction

Optimized prediction based on textual sentiment, accounting for the intrinsic challenge that sentiment can be computed and pooled across texts and time in various ways. See Ardia et al. (2021) <doi:10.18637/jss.v099.i02>.

Version: 1.0.0
Depends: R (≥ 3.3.0)
Imports: caret, compiler, data.table, foreach, ggplot2, glmnet, ISOweek, quanteda, Rcpp (≥ 0.12.13), RcppRoll, RcppParallel, stats, stringi, utils
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Suggests: covr, doParallel, e1071, lexicon, MCS, NLP, parallel, randomForest, stopwords, testthat, tm
Published: 2021-08-18
DOI: 10.32614/CRAN.package.sentometrics
Author: Samuel Borms ORCID iD [aut, cre], David Ardia ORCID iD [aut], Keven Bluteau ORCID iD [aut], Kris Boudt ORCID iD [aut], Jeroen Van Pelt [ctb], Andres Algaba [ctb]
Maintainer: Samuel Borms <borms_sam at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
SystemRequirements: GNU make
Citation: sentometrics citation info
Materials: README NEWS
In views: NaturalLanguageProcessing
CRAN checks: sentometrics results


Reference manual: sentometrics.pdf


Package source: sentometrics_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): sentometrics_1.0.0.tgz, r-oldrel (arm64): sentometrics_1.0.0.tgz, r-release (x86_64): sentometrics_1.0.0.tgz, r-oldrel (x86_64): sentometrics_1.0.0.tgz
Old sources: sentometrics archive

Reverse dependencies:

Reverse suggests: sentopics


Please use the canonical form to link to this page.