## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(yaml) sklearn_model <- strsplit("general: is_glm: 0 model: lm residual: 0 sigma2: 0 type: regression version: 2.0 terms: - coef: 152.76430691633442 fields: - col: (Intercept) type: ordinary is_intercept: 1 label: (Intercept) - coef: 0.3034995490660432 fields: - col: age type: ordinary is_intercept: 0 label: age - coef: -237.63931533353403 fields: - col: sex type: ordinary is_intercept: 0 label: sex - coef: 510.5306054362253 fields: - col: bmi type: ordinary is_intercept: 0 label: bmi - coef: 327.7369804093466 fields: - col: bp type: ordinary is_intercept: 0 label: bp - coef: -814.1317093725387 fields: - col: s1 type: ordinary is_intercept: 0 label: s1 ", split = "\n")[[1]] ## ----------------------------------------------------------------------------- sklearn_model <- yaml.load(sklearn_model) str(sklearn_model, 2) ## ----------------------------------------------------------------------------- library(tidypredict) spm <- as_parsed_model(sklearn_model) class(spm) ## ----------------------------------------------------------------------------- tidypredict_fit(spm) ## ----------------------------------------------------------------------------- tidypredict_sql(spm, dbplyr::simulate_mssql()) ## ----------------------------------------------------------------------------- tidy(spm)