Shishi

Kerberos 5 implementation for the GNU system
for version 1.0.0, 13 April 2010

Simon Josefsson

This manual is last updated 13 April 2010 for version 1.0.0 of Shishi.
Copyright (©) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Simon Josefsson.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Introduction................... 1
1.1 Getting Started 1
1.2 Features and Status...........cooviiiiiiiiiiiiii i, 1
1.3 OVEIVIEW ottt e e e 3
1.4 Cryptographic OvVerview.ottt 5
1.5 Supported Platforms i i 9
1.6 Getting helpo 10
1.7 Commercial SUpportc.ooiiiiiiiii i 10
1.8 Downloading and Installing 11
1.9 Bug Reports oo 12
1.10 Contributing.oe i e 12

2 UserManual................................... 14
2.1 Proxiable and Proxy Tickets, 16
2.2 Forwardable and Forwarded Tickets........................... 17

3 Administration Manual 19
3.1 Introduction to Shisa...............ccoiiiiiiiiiiiiii... 19
3.2 Configuring Shisa....... ... i 19
3.3 Using Shisaoouuiii 20
3.4 Starting Shishid........o 24
3.5 Configuring DNS for KDC i 26

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names..... 26
3.5.2 Overview - KDC location information 26
3.5.3 Example - KDC location information..................... 27
3.5.4 Security considerations............. ... oo, 27
3.6 Kerberos via TLS 27
3.6.1 Setting up TLS resume. ..., 27
3.6.2 Setting up Anonymous TLS 28
3.6.3 Setting up X.509 authenticated TLS...................... 29
3.6.3.1 Create a Kerberos Certificate Authority 29
3.6.3.2 Create a Kerberos KDC Certificate 30
3.6.3.3 Create a Kerberos Client Certificate 32
3.6.3.4 Starting KDC with X.509 authentication support 33

3.7 Multiple SErvers. 34
3.8 Developer information................coiiiiiiii i 36

4 Reference Manual 37
4.1 Environmental Assumptions..............coiiiiiiiiii.. 37
4.2 Glossary of terms ... 37
4.3 Realm and Principal Naming................, 39

4.3.1 Realm Namesooiiiii i 39

4.3.2 Principal Names i 40
4.3.2.1 Name of server principals............................ 41
4.3.2.2 Nameofthe TGS o i, 42

4.3.3 Choosing a principal with which to communicate 42

4.3.4 Principal Name Form L 43

4.4 Shishi Configurationc.cooiiiiiiiiieiiiii ... 43

4.4.1 ‘default-realm’coiiiiiiiiiiiiiiiiiiii 43

4.4.2 ‘default-principal’ceiiiiiiiiiiiiii 44

4.4.3 ‘client-Kdc—etypes’c.c.iiiiiiiiiiii i 44

4.4.4 ‘verbose’, ‘verbose-asnl’, ‘verbose-noise’,

‘verbose-crypto’, ‘verbose-crypto-noise’................ 44
4.4.5 ‘realm-KACottt 44
4.4.6 ‘server-reallciiiiiiiiiii 44
4.4.7 ‘kdc-timeout’, ‘kdc-retries’......... 44
4.4.8 ‘Stringprocess’ ... 45
4.4.9 ‘ticket-life ... 45
4.4.10 ‘renew—life 45
4.5 Shisa Configuration oo 46

5 T T« | P 46
4.6 Parameters for shishi......... o 47
4.7 Parameters for shishid 48
4.8 Parameters for shisa i i 49
4.9 Environment variables 51
4.10 Date input formatso 51

4.10.1 General date syntax...........ccoiuiiiiiiiiiiaiien.. 51

4.10.2 Calendar date items..............ooiiiiiiiiii i, 52

4.10.3 Time of day items..........coviiiiiiiii .. 53

4.10.4 Time zone items ...t 54

4.10.5 Day of week items........... i 54

4.10.6 Relative items in date strings................ 55

4.10.7 Pure numbers in date strings................ ... L 56

4.10.8 Seconds since the Epoch 56

4.10.9 Specifying time zone rules........... L. 56

4.10.10 Authorsof get_date..............oiiiiiiiiiiiii... 57

5 Programming Manual......................... 58
5.1 Preparation...........oooiiiiiiiii 58

5. 1.1 Header.oooiiiii 58

5.1.2 Initialization........ 58

5.1.3 Version Check....... ..o 58

5.1.4 Building the source.......... ... i 59

5.1.5 Autoconf tests ... 59
5.1.5.1 Autoconf test via ‘pkg-config’...................... 59
5.1.5.2 Standalone Autoconf test using Libtool.............. 60
5.1.5.3 Standalone Autoconf test.................... 60

5.2 Imitialization Functions............ ... o i i 61
5.3 Ticket Set Functionscoviiiiiiiiiii ... 65

5.4 AP-REQ and AP-REP Functions.............................. 71

ii

5.5 SAFE and PRIV Functions ...t .. 92

5.6 Ticket Functions........ ..o 103
5.7 AS Functions 114
5.8 TGS Functionso 119
5.9 Ticket (ASN.1) Functions.............. ..., 125
5.10 AS/TGS Functionsc.oovuiuiiiiiiiiinaen.. 131
5.11 Authenticator Functions 153
5.12 KRB-ERROR Functions..............ooooiiiiiiiiiiia.. 162
5.13 Cryptographic Functions.............. ... i, 173
514 X.509 Functionsouuuiiitii i 200
5.15 Utility Functions.o i 202
5.16 ASN.1 Functions.ouueiiiie i, 209
5.17 Error Handling i 221
5.17.1 Error Values....... ... 221
5.17.2 Error Functions.......... ... i i i 222
5.18 Examples.ooiiii e 224
5.19 Kerberos Database Functions 225
5.20 Generic Security Serviceooiiiiiiii i 232
6 Acknowledgements........................ ... 233
Appendix A Criticism of Kerberos........... 234
Appendix B Protocol Extensions............. 235
B.1 STARTTLS protected KDC exchanges....................... 235
B.1.1 TCP/IP transport with TLS upgrade (STARTTLS)..... 235
B.1.2 Extensible typed hole based on reserved high bit........ 236
B.1.3 STARTTLS requested by client (extension mode 1) 236
B.1.4 STARTTLS request accepted by server (extension mode 2)
... 236
B.1.5 Proceeding after successful TLS negotiation............. 236
B.1.6 Proceeding after failed TLS negotiation 237
B.1.7 Interaction with KDC addresses in DNS 237
B.1.8 Using TLS authentication logic in Kerberos............. 237
B.1.9 Security considerationscoiiiiiiiaiia... 237
B.2 Telnet encryption with AES-CCM 237
B.2.1 Command Names and Codes....................c.o.... 237
B.2.2 Command Meanings..............cooiiiiiiiiiiiiiann. 238
B.2.3 Implementation Rules L. 238
B.2.4 Integration with the AUTHENTICATION telnet option
... 239
B.2.5 Security Considerations.............. ..o, 239
B.2.5.1 Telnet Encryption Protocol Security Considerations
.. 240
B.2.5.2 AES-CCM Security Considerations................. 240
B.2.6 Acknowledgments.......... ... i 240

B.3 Kerberized rsh and rlogin......... oL 240

B.3.1 Establish connection............ 240

B.3.2 Kerberos identification........... ..ot 241

B.3.3 Kerberos authentication 241

B.3.4 Extended authentication.................. ... vt 241

B.3.5 Window Size. ..ot 242

B.3.6 End of authentication............... 242

B.3.7 Encryption...........oiiiiii 242

B.3.8 KCMDVO0.3. .. 243

B.3.9 MIT/Heimdal authorization 244

B.4 Key as initialization vector il 244
B.5 The Keytab Binary File Format 245
B.6 The Credential Cache Binary File Format.................... 248
Appendix C Copying Information............ 251
C.1 GNU Free Documentation License 251
C.2 GNU General Public Licensecooviiiiin ... 258
Function and Data Index........................ 270

Concept Index.............. i, 277

Chapter 1: Introduction 1

1 Introduction

Shishi is an implementation of the Kerberos 5 network authentication system, as specified
in RFC 4120. Shishi can be used to authenticate users in distributed systems.

Shishi contains a library (’libshishi’) that can be used by application developers to add
support for Kerberos 5. Shishi contains a command line utility (’shishi’) that is used by
users to acquire and manage tickets (and more). The server side, a Key Distribution Center,
is implemented by ’shishid’. Of course, a manual documenting usage aspects as well as the
programming APT is included.

Shishi currently supports AS/TGS exchanges for acquiring tickets, pre-authentication,
the AP exchange for performing client and server authentication, and SAFE/PRIV for
integrity /privacy protected application data exchanges.

Shishi is internationalized; error and status messages can be translated into the users’ lan-
guage; user name and passwords can be converted into any available character set (normally
including ISO-8859-1 and UTF-8) and also be processed using an experimental Stringprep
profile.

Most, if not all, of the widely used encryption and checksum types are supported, such
as 3DES, AES, ARCFOUR and HMAC-SHAL.

Shishi is developed for the GNU/Linux system, but runs on over 20 platforms includ-
ing most major Unix platforms and Windows, and many kind of devices including iPAQ
handhelds and S/390 mainframes.

Shishi is free software licensed under the GNU General Public License version 3.0 or
later.

1.1 Getting Started

This manual documents the Shishi application and library programming interface. All
commands, functions and data types provided by Shishi are explained.

The reader is assumed to possess basic familiarity with network security and the Kerberos
5 security system.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features and Status

Shishi might have a couple of advantages over other packages doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License version 3.0 (see Section C.2 [GNU GPLJ, page 258) or
later.

Chapter 1: Introduction 2

It’s thread-safe

The library uses no global variables.

It’s internationalized

It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable

yet.

It should work on all Unix like operating systems, including Windows.

Shishi is far from feature complete, it is not even a full RFC 1510 implementation
However, some basic functionality is implemented. A few implemented feature are

mentioned below.

an

Initial authentication (AS) from raw key or password. This step is typically used to
acquire a ticket granting ticket and, less commonly, a server ticket.

Subsequent authentication (TGS). This step is typically used to acquire a server ticket,
by authenticating yourself using the ticket granting ticket.

Client-Server authentication (AP). This step is used by clients and servers to prove to
each other who they are, using negotiated tickets.

Integrity protected communication (SAFE). This step is used by clients and servers to
exchange integrity protected data with each other. The key is typically agreed on using
the Client-Server authentication step.

Ticket cache, supporting multiple principals and realms. As tickets have a life time of
typically several hours, they are managed in disk files. There can be multiple ticket
caches, and each ticket cache can store tickets for multiple clients (users), servers,
encryption types, etc. Functionality is provided for locating the proper ticket for every
use.

Most standard cryptographic primitives. The believed most secure algorithms are
supported (see Section 1.4 [Cryptographic Overview], page 5).

Telnet client and server. This is used to remotely login to other machines, after au-
thenticating yourself with a ticket.

PAM module. This is used to login locally on a machine.

KDC addresses located using DNS SRV RRs.

Modularized low-level crypto interface. Currently Gnulib and Libgcrypt are sup-
ported. If you wish to add support for another low-level cryptographic library, you

only have to implement a few APIs for DES, AES, MD5, SHA1, HMAC, etc. Look at
‘gl/gc-gnulib.c’ or ‘gl/gc-libgcrypt.c’ as a starting pointer.

The following table summarize what the current objectives are (i.e., the todo list) and
estimate on how long it will take to implement the feature, including some reasonable

startup-time to get familiar with Shishi in general. If you like to start working on anything,
please let me know so work duplication can be avoided.

Parse ‘/etc/krb5.keytab’ to extract keys to use for telnetd etc (week)
Cross-realm support (week).
PKINIT (use libksba, weeks)

Chapter 1: Introduction 3

e Finish GSSAPI support via GSSLib (weeks) Shishi will not support GSSLib natively,
but a separate project “GSSLib” is under way to produce a generic GSS implementa-
tion, and it will use Shishi to implement the Kerberos 5 mechanism.

e Port to cyclone (cyclone need to mature first)

e Modularize ASN.1 library so it can be replaced (days). Almost done, all ASN.1 func-
tionality is found in lib/asnl.c, although the interface is rather libtasnl centric.

e KDC (initiated, weeks)

e LDAP backend for Shisa.

e Set/Change password protocol (weeks?)

e Port applications to use Shishi (indefinite)

e Finish server-realm stuff

e Improve documentation

e Improve internationalization

e Add AP-REQ replay cache (week).

e Study benefits by introducing a PA-TGS-REP. This would provide mutual authentica-
tion of the KDC in a way that is easier to analyze. Currently the mutual authentication
property is only implicit from successful decryption of the KDC-REP and the 4 byte
nonce.

e GUI applet for managing tickets. This is supported via the ticket-applet, of which a
Shishi port is published on the Shishi home page.

e Authorization library (months?) The shishi_authorized_p() is not a good solution,
better would be to have a generic and flexible authorization library. Possibly based on
S-EXP’s in tickets? Should support non-Kerberos uses as well, of course.

e Proof read manual.

e X.500 support, including DOMAIN-X500-COMPRESS. I will accept patches that im-
plement this, if it causes minimal changes to the current code.

1.3 Overview

This section describes RFC 1510 from a protocol point of view!.

Kerberos provides a means of verifying the identities of principals, (e.g., a workstation
user or a network server) on an open (unprotected) network. This is accomplished without
relying on authentication by the host operating system, without basing trust on host ad-
dresses, without requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and inserted at
will. (Note, however, that many applications use Kerberos’ functions only upon the initia-
tion of a stream-based network connection, and assume the absence of any "hijackers" who
might subvert such a connection. Such use implicitly trusts the host addresses involved.)
Kerberos performs authentication under these conditions as a trusted third- party authen-
tication service by using conventional cryptography, i.e., shared secret key. (shared secret
key - Secret and private are often used interchangeably in the literature. In our usage, it

! The text is a lightly adapted version of the introduction section from RFC 1510 by J. Kohl and C.
Neuman, September 1993, copyright likely owned by the RFC 1510 authors or some contributor.

Chapter 1: Introduction 4

takes two (or more) to share a secret, thus a shared DES key is a secret key. Something is
only private when no one but its owner knows it. Thus, in public key cryptosystems, one
has a public and a private key.)

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting "credentials" for a given server. The AS responds with
these credentials, encrypted in the client’s key. The credentials consist of 1) a "ticket" for
the server and 2) a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client’s identity and a copy of the session key, all
encrypted in the server’s key) to the server. The session key (now shared by the client and
server) is used to authenticate the client, and may optionally be used to authenticate the
server. It may also be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physi-
cally secure hosts. The authentication servers maintain a database of principals (i.e., users
and servers) and their secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library, which results in the transmission
of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a
transaction, to ensure the integrity of messages exchanged between them, or to preserve
privacy of the messages. The application is free to choose whatever protection may be
necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent "in the clear" (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal to
whom the ticket was issued. This information (called the authenticator) is encrypted in the
session key, and includes a timestamp. The timestamp proves that the message was recently
generated and is not a replay. Encrypting the authenticator in the session key proves that
it was generated by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the network in the clear)
this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach
provides detection of both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and

Chapter 1: Introduction 5

integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket, and contained in the credentials.

1.4 Cryptographic Overview

Shishi implements several of the standard cryptographic primitives. In this section we
give the names of the supported encryption suites, and some notes about them, and their
associated checksum suite.

Statements such as “it is weak” should be read as meaning that there is no credible
security analysis of the mechanism available, and/or that should an attack be published
publicly, few people would likely be surprised. Also keep in mind that the key size mentioned
is the actual key size, not the effective key space as far as a brute force attack is concerned.

As you may infer from the descriptions, there is currently no encryption algorithm and
only one checksum algorithm that inspire great confidence in its design. Hopefully this will
change over time.

NULL

NULL is a dummy encryption suite for debugging. Encryption and decryption
are identity functions. No integrity protection. It is weak. It is associated with
the NULL checksum.

arcfour-hmac

arcfour-hmac-exp
arcfour-hmac-* are a proprietary stream cipher with 56 bit (arcfour-hmac-
exp) or 128 bit (arcfour-hmac) keys, used in a proprietary way described in an
expired IETF draft ‘draft-brezak-win2k-krb-rc4-hmac-04.txt’. Deriving
keys from passwords is supported, and is done by computing a message digest
(MD4) of a 16-bit Unicode representation of the ASCII password, with no salt.
Data is integrity protected with a keyed hash (HMAC-MD5), where the key is
derived from the base key in a creative way. It is weak. It is associated with
the arcfour-hmac-md5 checksum.

des—-cbc-none
des-cbc-none is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. It is weak, because it offers no
integrity protection. This is typically only used by RFC 1964 GSS-API im-
plementations (which try to protect integrity using an ad-hoc solution). It is
associated with the NULL checksum.

des—-cbc-crc
des-cbc-crc is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using the key as IV (see Section B.4 [Key as initialization
vector|, page 244). The keys can be derived from passwords by an obscure
application specific algorithm. Data is integrity protected with an unkeyed but
encrypted CRC32-like checksum. It is weak. It is associated with the rsa-md5-
des checksum.

Chapter 1: Introduction 6

des-cbc-md4
des-cbc-md4 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD4 hash. It is weak. It is associated with the
rsa-md4-des checksum.

des-cbc-mdb
des-cbc-md5 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD5 hash. It is weak. It is associated with the rsa-
md5-des checksum. This is the strongest RFC 1510 interoperable encryption
mechanism.

des3-cbc-none

des3-cbc-none is DES encryption and decryption with three 56 bit keys (ef-
fective key size 112 bits) and 8 byte blocks in CBC mode. The keys can be
derived from passwords by the same algorithm as des3-cbc-shal-kd. It is
weak, because it offers no integrity protection. This is typically only used by
GSS-API implementations (which try to protect integrity using an ad-hoc so-
lution) for interoperability with some existing Kerberos GSS implementations.
It is associated with the NULL checksum.

des3-cbc-shal-kd

des3-cbc-shal-kd is DES encryption and decryption with three 56 bit keys
(effective key size 112 bits) and 8 byte blocks in CBC mode. The keys can
be derived from passwords by a algorithm based on the paper "A Better Key
Schedule For DES-like Ciphers"? by Uri Blumenthal and Steven M. Bellovin
(it is not clear if the algorithm, and the way it is used, is used by any other
protocols, although it seems unlikely). Data is integrity protected with a keyed
SHA1 hash in HMAC mode. It has no security proof, but is assumed to provide
adequate security in the sense that knowledge on how to crack it is not known
to the public. Note that the key derivation function is not widely used outside
of Kerberos, hence not widely studied. It is associated with the hmac-shal-
des3-kd checksum.

aes128-cts-hmac-shal-96

aes256-cts-hmac-shal-96
aes128-cts-hmac-shal-96 and aes256-cts-hmac-shal-96 is AES encryption
and decryption with 128 bit and 256 bit key, respectively, and 16 byte blocks in
CBC mode with Cipher Text Stealing. Cipher Text Stealing means data length
of encrypted data is preserved (pure CBC add up to 7 pad characters). The
keys can be derived from passwords with RSA Laboratories PKCS#5 Pass-
word Based Key Derivation Function 23, which is allegedly provably secure in
a random oracle model. Data is integrity protected with a keyed SHA1 hash,

2 http://www.research.att.com/ smb/papers/ides.pdf
3 http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

http://www.research.att.com/~smb/papers/ides.pdf
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

Chapter 1: Introduction 7

in HMAC mode, truncated to 96 bits. There is no security proof, but the
schemes are assumed to provide adequate security in the sense that knowledge
on how to crack them is not known to the public. Note that AES has yet to
receive the test of time, and the AES cipher encryption mode (CBC with Ci-
phertext Stealing, and a non-standard IV output) is not widely standardized
(hence not widely studied). It is associated with the hmac-shal-96-aes128
and hmac-shal-96-aes256 checksums, respectively.

The protocol do not include any way to negotiate which checksum mechanisms to use,
so in most cases the associated checksum will be used. However, checksum mechanisms can
be used with other encryption mechanisms, as long as they are compatible in terms of key
format etc. Here are the names of the supported checksum mechanisms, with some notes
on their status and the compatible encryption mechanisms. They are ordered by increased
security as perceived by the author.

NULL

NULL is a dummy checksum suite for debugging. It provides no integrity. It is
weak. It is compatible with the NULL encryption mechanism.

arcfour-hmac-mdb5
arcfour-hmac-md5 is a keyed HMAC-MD5 checksum computed on a MD5 mes-
sage digest, in turn computed on a four byte message type indicator concate-
nated with the application data. (The arcfour designation is thus somewhat
misleading, but since this checksum mechanism is described in the same docu-
ment as the arcfour encryption mechanisms, it is not a completely unnatural
designation.) It is weak. It is compatible with all encryption mechanisms.

rsa-md4

rsa-md4 is a unkeyed MD4 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-md4-des
rsa-md4-des is a DES CBC encryption of one block of random data and a
unkeyed MD4 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

rsa-md5

rsa-md>5 is a unkeyed MDb5 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-md5-des
rsa-md5-des is a DES CBC encryption of one block of random data and a
unkeyed MD5 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a

Chapter 1: Introduction 8

constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

hmac-shal-des3-kd

hmac-shal-des3-kd is a keyed SHA1 hash in HMAC mode computed over
the message. The key is derived from the base protocol by the simplified key
derivation function (similar to the password key derivation functions of des3-
cbc-shal-kd, which does not appear to be widely used outside Kerberos and
hence not widely studied). It has no security proof, but is assumed to provide
good security. The weakest part is likely the proprietary key derivation function.
It is compatible with the des3-cbc-shal-kd encryption mechanism.

hmac-shal-96-aes128
hmac-shal-96-aes256

hmac-shal-96-aes* are keyed SHA1 hashes in HMAC mode computed over
the message and then truncated to 96 bits. The key is derived from the base
protocol by the simplified key derivation function (similar to the password key
derivation functions of aes*-cts-hmac-shal-96, i.e., PKCS#5). It has no
security proof, but is assumed to provide good security. It is compatible with
the aes*-cts-hmac-shal-96 encryption mechanisms.

Several of the cipher suites have long names that can be hard to memorize. For your
convenience, the following short-hand aliases exists. They can be used wherever the full
encryption names are used.

arcfour

des-crc

des-md4

des-md5
des

des3
3des

aes128

aes
aes256

Alias for arcfour-hmac.

Alias for des—-cbc-crc.

Alias for des-cbc-md4.

Alias for des-cbc-md5.

Alias for des3-cbc-shal-kd.

Alias for aes128-cts-hmac-shal-96.

Alias for aes256-cts-hmac-shal-96.

Chapter 1: Introduction 9

1.5 Supported Platforms

Shishi has at some point in time been tested on the following platforms. On-
line build reports for each platforms and Shishi version 1is available at
http://autobuild. josefsson.org/shishi/.

1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu, hppa64-unknown-linux-
gnu, 1686-pc-linux-gnu, ia64-unknown-linux-gnu, m68k-unknown-linux-gnu,
mips-unknown-linux-gnu, mipsel-unknown-linux-gnu, powerpc-unknown-linux-
gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu, sparc64-unknown-linux-
gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.4 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osfb.1.

4. SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.
6. SuSE Linux

GCC 3.22 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

7. RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

8. RedHat Linux 8.0
GCC 3.2 and GNU Make. 1686-pc-linux-gnu.
9. RedHat Advanced Server 2.1
GCC 2.96 and GNU Make. 1686-pc-linux-gnu.
10. Slackware Linux 8.0.01
GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.
11. Mandrake Linux 9.0
GCC 3.2 and GNU Make. 1686-pc-linux-gnu.

12. TRIX 6.5
MIPS C compiler, IRIX Make. mips-sgi-irix6.5.
13. AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

http://autobuild.josefsson.org/shishi/

Chapter 1: Introduction 10

14. HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
15. SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.
16. NetBSD 1.6

GCC 295.3 and GNU Make. alpha-unknown-netbsdl.6, i386-unknown-
netbsdelfl.6.

17. OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, 1i386-unknown-
openbsd3. 1.

18. FreeBSD 4.7 and 4.8

GCC 2954 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-
freebsd4.8, i386-unknown-freebsd4.7, 1386-unknown-freebsd4.8.

19. MacOS X 10.2 Server Edition
GCC 3.1 and GNU Make. powerpc-apple-darwiné.5.
20. Cross compiled to uClinux/uClibc on Motorola Coldfire.
GCC 3.4 and GNU Make m68k-uclinux-elf.

If you use Shishi on, or port Shishi to, a new platform please report it to the author (see
Section 1.9 [Bug Reports], page 12).

1.6 Getting help

A mailing list where users of Shishi may help each other exists, and you can reach it
by sending e-mail to help-shishi@gnu.org. Archives of the mailing list discussions,
and an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-shishi.

1.7 Commercial Support
Commercial support is available for users of Shishi. The kind of support that can be
purchased may include:

e Implement new features. Such as support for some optional part of the Kerberos
standards, e.g. PKINIT, hardware token authentication.

e Port Shishi to new platforms. This could include porting Shishi to an embedded plat-
forms that may need memory or size optimization.

e Integrate Kerberos 5 support in your existing project.

e System design of components related to Kerberos 5.

If you are interested, please write to:
Simon Josefsson Datakonsult
Hagagatan 24
113 47 Stockholm
Sweden

mailto:help-shishi@gnu.org
http://lists.gnu.org/mailman/listinfo/help-shishi

Chapter 1: Introduction 11

E-mail: simon@josefsson.org

If your company provides support related to Shishi and would like to be mentioned here,
contact the author (see Section 1.9 [Bug Reports|, page 12).

1.8 Downloading and Installing

The package can be downloaded from several places, including;:
ftp://alpha.gnu.org/pub/gnu/shishi/

The latest version is stored in a file, e.g., ‘shishi-1.0.0.tar.gz’ where the ‘1.0.0’
indicate the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://alpha.gnu.org/pub/gnu/shishi/shishi-1.0.0.tar.gz
$ tar xfz shishi-1.0.0.tar.gz

$ cd shishi-1.0.0/

$./configure

$ make
$ make install

After this you should be prepared to continue with the user, administration or program-
ming manual, depending on how you want to use Shishi.

A few configure options may be relevant, summarized in the table.

--disable-des

--disable-3des

--disable-aes

--disable-md

--disable-null

--disable-arcfour
Disable a cryptographic algorithm at compile time. Usually it is better to
disable algorithms during run-time with the configuration file, but this allows
you to reduce the code size slightly.

--disable-starttls
Disable the experimental TLS support for KDC connections. If you do not use
a Shishi KDC, this support is of no use so you could safely disable it.

--without-stringprep
Disable internationalized string processing.

For the complete list, refer to the output from configure --help.

ftp://alpha.gnu.org/pub/gnu/shishi/

Chapter 1: Introduction 12

1.9 Bug Reports

If you think you have found a bug in Shishi, please investigate it and report it.

e Please make sure that the bug is really in Shishi, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-shishi@josefsson.org’

1.10 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding
support for a new feature — you should submit it as a bug report (see Section 1.9 [Bug
Reports|, page 12). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:
e Coding Style. Follow the GNU Standards document (see (undefined) [top], page (un-
defined)).
If you normally code using another coding standard, there is no problem, but you

should use ‘indent’ to reformat the code (see (undefined) [top], page (undefined))
before submitting your work.

e Use the unified diff format ‘diff -u’.

e Return errors. The only valid reason for ever aborting the execution of the program is
due to memory allocation errors, but for that you should call ‘shishi_xalloc_die’ to
allow the application to recover if it wants to.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

Chapter 1: Introduction 13

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: User Manual 14

2 User Manual

Usually Shishi interacts with you to get some initial authentication information like a pass-
word, and then contacts a server to receive a so called ticket granting ticket. From now on,
you rarely interacts with Shishi directly. Applications that needs security services instruct
the Shishi library to use the ticket granting ticket to get new tickets for various servers. An
example could be if you log on to a host remotely via ‘telnet’. The host usually requires
authentication before permitting you in. The ‘telnet’ client uses the ticket granting ticket
to get a ticket for the server, and then use this ticket to authenticate you against the server
(typically the server is also authenticated to you). You perform the initial authentication
by typing shishi at the prompt. Sometimes it is necessary to supply options telling Shishi
what your principal name (user name in the Kerberos realm) or realm is. In the example,
I specify the client name simon@JOSEFSSON . ORG.

$ shishi simon@JOSEFSSON.ORG
Enter password for ‘simon@JOSEFSSON.ORG’:
simon@JOSEFSSON. ORG:

Authtime: Fri Aug 15 04:44:49 2003

Endtime: Fri Aug 15 05:01:29 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: INITIAL (512)

$

As you can see, Shishi also prints a short description of the ticket received.

A logical next step is to display all tickets you have received (by the way, the tickets are
usually stored as text in ‘~/.shishi/tickets’). This is achieved by typing shishi --1list.
$ shishi --list
Tickets in ‘/home/jas/.shishi/tickets’:

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: krbtgt/JOSEFSSON.ORG key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

Ticket flags: INITIAL (512)

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:49:49 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: host/latte. josefsson.org key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

2 tickets found.
$

As you can see, I had a ticket for the server ‘host/latte.josefsson.org’ which was
generated by ‘telnet’:ing to that host.

Chapter 2: User Manual 15

If, for some reason, you want to manually get a ticket for a specific server, you can use
the shishi --server-name command. Normally, however, the application that uses Shishi
will take care of getting a ticket for the appropriate server, so you normally wouldn’t need
this command.

$ shishi --server-name=user/billg --encryption-type=des-cbc-md4
jas@JOSEFSSON. ORG:

Authtime: Fri Aug 15 04:49:46 2003

Starttime: Fri Aug 15 04:54:33 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: user/billg key des-cbc-md4 (2)

Ticket key: des-cbc-md4 (2) protected by des-cbc-md5 (3)
$

As you can see, I acquired a ticket for ‘user/billg’ with a ‘des-cbc-md4’ (see Section 1.4
[Cryptographic Overview|, page 5) encryption key specified with the ‘--encryption-type’
parameter.

To wrap up this introduction, lets see how you can remove tickets. You may want to do
this if you leave your terminal for lunch or similar, and don’t want someone to be able to
copy the file and then use your credentials. Note that this only destroy the tickets locally,
it does not contact any server and tell it that these credentials are no longer valid. So if
someone stole your ticket file, you must contact your administrator and have them reset
your account, simply using this parameter is not sufficient.

$ shishi --server-name=imap/latte.josefsson.org --destroy
1 ticket removed.

$ shishi --server-name=foobar --destroy

No tickets removed.

$ shishi --destroy

3 tickets removed.

$

Since the ‘--server-name’ parameter takes a long to type, it is possible to type the
server name directly, after the client name. The following example demonstrate a AS-REQ
followed by a TGS-REQ for a specific server (assuming you did not have any tickets from
the start).

$ src/shishi simon@latte.josefsson.org imap/latte.josefsson.org
Enter password for ‘simon@latte.josefsson.org’:
simon@latte. josefsson.org:

Acquired: Wed Aug 27 17:21:06 2003

Expires: Wed Aug 27 17:37:46 2003

Server: imap/latte.josefsson.org key aes256-cts-hmac-shal-96 (18)

Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-shal-96 (18)
Ticket flags: FORWARDED PROXIABLE (12)

$

Refer to the reference manual for all available parameters (see Section 4.6 [Parameters
for shishi], page 47). The rest of this section contains description of more specialized usage
modes that can be ignored by most users

Chapter 2: User Manual 16

2.1 Proxiable and Proxy Tickets

At times it may be necessary for a principal to allow a service to perform an operation on
its behalf. The service must be able to take on the identity of the client, but only for a
particular purpose. A principal can allow a service to take on the principal’s identity for a
particular purpose by granting it a proxy.

The process of granting a proxy using the proxy and proxiable flags is used to provide
credentials for use with specific services. Though conceptually also a proxy, users wishing
to delegate their identity in a form usable for all purpose MUST use the ticket forwarding
mechanism described in the next section to forward a ticket-granting ticket.

The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket) with a
different network address based on this ticket. This flag is set if requested by the client on
initial authentication. By default, the client will request that it be set when requesting a
ticket-granting ticket, and reset when requesting any other ticket.

This flag allows a client to pass a proxy to a server to perform a remote request on its
behalf (e.g. a print service client can give the print server a proxy to access the client’s files
on a particular file server in order to satisfy a print request).

In order to complicate the use of stolen credentials, Kerberos tickets are usually valid
from only those network addresses specifically included in the ticket[4]. When granting a
proxy, the client MUST specify the new network address from which the proxy is to be
used, or indicate that the proxy is to be issued for use from any address.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Application

servers MAY check this flag and at their option they MAY require additional authentication
from the agent presenting the proxy in order to provide an audit trail.

Here is how you would acquire a PROXY ticket for the service ‘imap/latte. josefsson.org’:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
Enter password for ‘jas@JOSEFSSON.ORG’:

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON. ORG:

Authtime: Mon Sep 8 20:02:35 2003

Starttime: Mon Sep 8 20:02:36 2003

Endtime: Tue Sep 9 04:02:35 2003

Server: imap/latte.josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: PROXY (16)

$

As you noticed, this asked for your password. The reason is that proxy tickets must be
acquired using a proxiable ticket granting ticket, which was not present. If you often need
to get proxy tickets, you may acquire a proxiable ticket granting ticket from the start:

$ shishi --proxiable

Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON. ORG:

Authtime: Mon Sep 8 20:04:27 2003

Chapter 2: User Manual 17

Endtime: Tue Sep 9 04:04:27 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)

Ticket flags: PROXIABLE INITIAL (520)

Then you should be able to acquire proxy tickets based on that ticket granting ticket,
as follows:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:04:27 2003

Starttime: Mon Sep 8 20:04:32 2003

Endtime: Tue Sep 9 04:04:27 2003

Server: imap/latte.josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: PROXY (16)

$

2.2 Forwardable and Forwarded Tickets

Authentication forwarding is an instance of a proxy where the service that is granted is
complete use of the client’s identity. An example where it might be used is when a user logs
in to a remote system and wants authentication to work from that system as if the login
were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. The FORWARDABLE flag has an inter-
pretation similar to that of the PROXIABLE flag, except ticket-granting tickets may also
be issued with different network addresses. This flag is reset by default, but users MAY
request that it be set by setting the FORWARDABLE option in the AS request when they
request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to enter a
password again. If the flag is not set, then authentication forwarding is not permitted, but
the same result can still be achieved if the user engages in the AS exchange specifying the
requested network addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FORWARDED
KDC option and supplying a set of addresses for the new ticket. It is also set in all tickets
issued based on tickets with the FORWARDED flag set. Application servers may choose to
process FORWARDED tickets differently than non-FORWARDED tickets.

If addressless tickets are forwarded from one system to another, clients SHOULD still
use this option to obtain a new TGT in order to have different session keys on the different
systems.

Here is how you would acquire a FORWARDED ticket for the service
‘host/latte. josefsson.org’:

$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
Enter password for ‘jas@JOSEFSSON.ORG’:

Chapter 2: User Manual 18

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON. ORG:

Authtime: Mon Sep 8 20:07:11 2003

Starttime: Mon Sep 8 20:07:12 2003

Endtime: Tue Sep 9 04:07:11 2003

Server: host/latte. josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: FORWARDED (4)

$

As you noticed, this asked for your password. The reason is that forwarded tickets must
be acquired using a forwardable ticket granting ticket, which was not present. If you often
need to get forwarded tickets, you may acquire a forwardable ticket granting ticket from
the start:

$ shishi —--forwardable
Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:08:53 2003

Endtime: Tue Sep 9 04:08:53 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: FORWARDABLE INITIAL (514)

$

Then you should be able to acquire forwarded tickets based on that ticket granting ticket,
as follows:
$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:08:53 2003

Starttime: Mon Sep 8 20:08:57 2003

Endtime: Tue Sep 9 04:08:53 2003

Server: host/latte.josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)

Ticket flags: FORWARDED (4)
$

Chapter 3: Administration Manual 19

3 Administration Manual

Here you will learn how to set up, run and maintain the Shishi Kerberos server. Kerberos is
incompatible with the standard Unix ‘/etc/passwd’ password database!, therefor the first
step will be to create a Kerberos user database. Shishi’s user database system is called
Shisa. Once Shisa is configured, you can then start the server and begin issuing Kerberos
tickets to your users. The Shishi server is called ‘shishid’. After getting the server up and
running, we discuss how you can set up multiple Kerberos servers, to increase availability
or offer load-balancing. Finally, we include some information intended for developers, that
will enable you to customize Shisa to use an external user database, such as a LDAP server
or SQL database.

3.1 Introduction to Shisa

The user database part of Shishi is called Shisa. The Shisa library is independent of the
core Shishi library. Shisa is responsible for storing the name of your realms, the name
of your principals (users), accounting information for the users (i.e., when each account
start to be valid and when it expire), and the cryptographic keys each user have. Some
Kerberos internal data can also be stored, such as the key version number, the last dates for
when various ticket requests were made, the cryptographic salt, string-to-key parameters
and password for each user. Not all information need to be stored. For example, in some
situations it is prudent to leave the password field empty, so that somebody who manage to
steal the user database will only be able to compromise your system, and not other systems
were your user may have re-used the same password. On the other hand, you may already
store the password in your customized database, in which case being able to change it via
the Shisa interface can be useful.

Shisa is a small (a few thousand lines of C code) standalone library. Shisa does not
depend on the Shishi library. Because a user database with passwords may be useful for
other applications as well (e.g., GNU SASL), it may be separated into its own project later
on. You should keep this in mind, so that you don’t consider writing a Shisa backend for
your own database a purely Shishi specific project. You may, for example, chose to use the
Shisa interface in your own applications to have a simple interface to your user database.
Your experience and feedback is appreciated if you chose to explore this.

Note that the Shisa database does not expose everything you may want to know about a
user, such as its full human name, telephone number or even the user’s login account name
or home directory. It only store what is needed to authenticate a peer claiming to be an
entity. Thus it does not make sense to replace your current user database or ‘/etc/passwd’
with data derived from the Shisa database. Instead, it is intended that you write a Shisa
backend that export some of the information stored in your user database. You may be able
to replace some existing functionality, such as the password field in ‘/etc/passwd’ with a
Kerberos PAM module, but there is no requirement for doing so.

3.2 Configuring Shisa

The configuration file for Shisa is typically stored in ‘/usr/local/etc/shishi/shisa.conf’.
You do not have to configure this file, the defaults should be acceptable to first-time users.

1 And besides, Shishi is intended to work on non-Unix platforms as well.

Chapter 3: Administration Manual 20

The file is used to define where you user database reside, and some options such as making
the database read-only or whether errors detected when accessing the database should be
ignored. (The latter may be useful if the server is a remote LDAP server that may be
unavailable, and you want to fail over to a local copy of the database.)

The default will store the user database using directories and files, rooted by default in
‘/usr/local/var/shishi’. You may use standard file permission settings to control access
to the directory hierarchy. It is strongly recommended to restrict access to the directory.
Storing the directory on local storage (i.e., hard disk or removal media) is recommended.
We discourage placing the database on a network file system, but realize it can be useful in
some situations (see Section 3.7 [Multiple servers|, page 34).

See the reference manual (see Section 4.5 [Shisa Configuration|, page 46) for the details
of the configuration file. Again, you are not expected to need to modify anything unless
you are an experienced Shishi administrator.

3.3 Using Shisa

There is a command line interface to the Shisa library, aptly named ‘shisa’. You will
use this tool to add, remove and change information stored in the database about realms,
principals and keys. The tool can also be used to “dump” all information in the database,
for backup or debugging purposes. (Currently the output format cannot be read by any tool,
but functionality to do this will be added in the future, possibly as a read-only file-based
Shisa database backend.)

The reference manual (see Section 4.8 [Parameters for shisa], page 49) explains all pa-
rameters, but here we will give you a walk-through of the typical uses of the tool.

Installing Shishi usually create a realm with two principals; one ticket granting ticket for
the realm, and one host key for the server. This is what you typically need to get started,
but it doesn’t serve our purposes. So we start by removing the principals and the realm. To
do that, we need to figure out the name of the realm. The ‘--1ist’ or ‘--dump’ parameters
can be used for this. (Most “long” parameters, like ‘--dump’, have shorter names as well,
in this case ‘-d’, Section 4.8 [Parameters for shisal, page 49).

jas@latte:~$ shisa -d
latte
krbtgt/latte
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).
Salt lattekrbtgt/latte.
host/latte
Account is enabled.
Current key version O (0x0).
Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).
Salt lattehost/latte.
jas@latte:~$

Chapter 3: Administration Manual 21

The realm names are printed at column 0, the principal names are indented with one
‘TAB’ character (aka ‘\t’ or ASCII 0x09 Horizontal Tabulation), and the information about
each principal are indented with two ‘TAB’ characters. The above output means that there
is one realm ‘latte’ with two principals; ‘krbtgt/latte’ (which is used to authenticate
Kerberos ticket requests) and ‘host/latte’ (used to authenticate host-based applications
like Telnet). They were created during ‘make install’ on a host called ‘latte’.

If the installation did not create a default database for you, you might get an error
similar to the following.

jas@latte:~$ shisa -d

shisa: Cannot initialize ‘file’ database backend.
Location ‘/usr/local/var/shishi’ and options ‘N/A’.
shisa: Initialization failed:

Shisa database could not be opened.

jas@latte:™$

This indicate the database do not exist. For a file database, you can create it by simply
creating the directory, as follows. Note the access permission change with ‘chmod’. Typi-
cally the ‘root’ user would own the files, but as these examples demonstrate, setting up a
Kerberos server does not require root access. Indeed, it may be prudent to run all Shishi
applications as a special non-‘root’ user, and have all Shishi related files owned by that
user, so that any security vulnerabilities does not lead to a system compromise. (However,
if the user database is stolen, system compromises of other systems may be possible if you
use, e.g., Kerberos Telnet.)

jas@latte:”$ mkdir /usr/local/var/shishi
jas@latte:”$ chmod go-rwx /usr/local/var/shishi

Back to the first example, where you have a realm ‘latte’ with some principals. We
want to remove the realm to demonstrate how you create the realm from scratch. (Of
course, you can have more than one realm in the database, but for this example we assume
you want to set up a realm named the same as Shishi guessed you would name it, so the
existing realm need to be removed first.) The ‘--remove’ (short form ‘-r’) parameter is
used for this purpose, as follows.

jas@latte:~$ shisa -r latte host/latte
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
jas@latte:~$ shisa -r latte krbtgt/latte
Removing principal ‘krbtgt/latte@latte’...
Removing principal ‘krbtgt/latte@latte’...done
jas@latte:”$ shisa -r latte

Removing realm ‘latte’...

Removing realm ‘latte’...done

jas@latte:"$

You may be asking yourself “What if the realm has many more principals?”. If you fear
manual labor (or a small ‘sed’ script, recall the format of ‘--1ist’?), don’t worry, there is
a ‘-—force’ (short form ‘-f’) flag. Use with care. Here is a faster way to do the above:

jas@latte:”$ shisa -r latte -f
Removing principal ‘krbtgt/latte@latte’...

Chapter 3: Administration Manual 22

Removing principal ‘krbtgt/latte@latte’...done
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
Removing realm ‘latte’...

Removing realm ‘latte’...done

jas@latte:"$

You should now have a working, but empty, Shisa database. Let’s set up the realm
manually, step by step. The first step is to decide on name for your realm. The full story is
explained elsewhere (see Section 4.3 [Realm and Principal Naming], page 39) but the short
story is to take your DNS domain name and translate it to upper case. For example, if your
organization uses example.org it is a good idea to use EXAMPLE.ORG as the name of your
Kerberos realm. We’ll use EXAMPLE. ORG as the realm name in these examples. Let’s create
the realm.

jas@latte:~$ shisa -a EXAMPLE.ORG
Adding realm ‘EXAMPLE.ORG’...
Adding realm ‘EXAMPLE.ORG’...done
jas@latte:"$

Currently, there are no properties associated with entire realms. In the future, it may be
possible to set a default realm-wide password expiry policy or similar. Each realm normally
have one principal that is used for authenticating against the “ticket granting service” on
the Kerberos server with a ticket instead of using the password. This is used by the user
when she acquire a ticket for servers. This principal must look like ‘krbtgt/REALM’ (see
[Name of the TGS], page 42). Let’s create it.

jas@latte:~$ shisa -a EXAMPLE.ORG krbtgt/EXAMPLE.ORG
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.ORG’...
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.QORG’...done
jas@latte:"$

Now that wasn’t difficult, although not very satisfying either. What does adding a
principal mean? The name is created, obviously, but it also mean setting a few values in
the database. Let’s view the entry to find out which values.

jas@latte:~$ shisa -d
EXAMPLE.ORG
krbtgt/EXAMPLE.ORG
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).
Salt EXAMPLE.ORGkrbtgt/EXAMPLE.ORG.
jas@latte:"$

To wuse host based security services like SSH or Telnet with Kerberos, each
host must have a key shared between the host and the KDC. The key is typically
stored in ‘/usr/local/etc/shishi/shishi.keys’. We assume your server is called
‘mail.example.org’ and create the principal. To illustrate a new parameter, we also
set the specific algorithm to use by using the ‘--encryption-type’ (short form ‘-E’)
parameter.

Chapter 3: Administration Manual 23

jas@latte:~$ shisa -a EXAMPLE.ORG host/mail.example.org -E des3
Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...

Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...done
jas@latte:~$

To export the key, there is another Shisa parameter ‘--keys’ that will print the key in
a format that is recognized by Shishi. Let’s use it to print the host key.

jas@latte:~$ shisa -d --keys EXAMPLE.ORG host/mail.example.org
EXAMPLE.ORG
host/mail.example.org
Account is enabled.
Current key version O (0x0).
Key 0 (0x0).
Etype des3-cbc-shal-kd (0x10, 16).

Keytype: 16 (des3-cbc-shal-kd)
Principal: host/mail.example.org
Realm: EXAMPLE.ORG

1QdA8hxdvOUHZN1iZJv7noMO2rXHV8gq
----- END SHISHI KEY-----

Salt EXAMPLE.ORGhost/mail.example.org.
jas@latte:"$

So to set up the host, simply redirect output to the host key file.

jas@latte:~$ shisa -d --keys EXAMPLE.ORG \
host/mail.example.org > /usr/local/etc/shishi/shishi.keys
jas@latte:™$

The next logical step is to create a principal for some user, so you can use your password
to get a Ticket Granting Ticket via the Authentication Service (AS) from the KDC, and
then use the Ticket Granting Service (TGS) from the KDC to get a ticket for a specific
host, and then send that ticket to the host to authenticate yourself. Creating this end-user
principle is slightly different from the earlier steps, because you want the key to be derived
from a password instead of being a random key. The ‘~-password’ parameter indicate this.
This make the tool ask you for the password.

jas@latte:~$ shisa -a EXAMPLE.ORG simon --password
Password for ‘simon@EXAMPLE.ORG’:

Adding principal ‘simon@EXAMPLE.ORG’...

Adding principal ‘simon@EXAMPLE.ORG’...done
jas@latte:~$

The only special thing about this principal now is that it has a password field set in the
database.

jas@latte:~$ shisa -d EXAMPLE.ORG simon --keys
EXAMPLE.ORG
simon
Account is enabled.
Current key version 0 (0x0).

Chapter 3: Administration Manual 24

Key 0 (0x0).
Etype aes256-cts-hmac-shal-96 (0x12, 18).

Keytype: 18 (aes256-cts-hmac-shal-96)
Principal: simon
Realm: EXAMPLE.ORG

Ja7ciNtrAI3gtodLaVDQ5zhcH58ffk0kS5tGAM7ILvM=

Salt EXAMPLE.ORGsimon.
Password foo.
jas@latte:™$

You should now be ready to start the KDC, which is explained in the next section (see
Section 3.4 [Starting Shishid], page 24), and get tickets as explained earlier (see Chapter 2
[User Manual|, page 14).

3.4 Starting Shishid

The Shishi server, or Key Distribution Center (KDC), is called Shishid. Shishid is respon-
sible for listening on UDP and TCP ports for Kerberos requests. Currently it can handle
initial ticket requests (Authentication Service, or AS), typically authenticated with keys
derived from passwords, and subsequent ticket requests (Ticket Granting Service, or TGS),
typically authenticated with the key acquired during an AS exchange.

Currently there is very little configuration available, the only variables are which ports
the server should listen on and an optional user name to setuid into after successfully
listening to the ports.

By default, Shishid listens on the ‘kerberos’ service port (typically translated to 88 via
‘/etc/services’) on the UDP and TCP transports via IPv4 and (if your machine support
it) IPv6 on all interfaces on your machine. Here is a typical startup.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid
Initializing GNUTLS...

Initializing GNUTLS...done

Listening on IPv4:*:kerberos/udp...done

Listening on IPv4:*:kerberos/tcp...done

Listening on IPv6:*:kerberos/udp...failed

socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed

socket: Address family not supported by protocol
Listening on 2 ports...

Running as root is not recommended. Any security problem in shishid and your host
may be compromised. Therefor, we recommend using the ‘--setuid’ parameter, as follows.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid --setuid=jas
Initializing GNUTLS...

Initializing GNUTLS...done

Listening on IPv4:*:kerberos/udp...done

Listening on IPv4:*:kerberos/tcp...done

Chapter 3: Administration Manual 25

Listening on IPv6:*:kerberos/udp...failed
socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed
socket: Address family not supported by protocol
Listening on 2 ports...

User identity set to ‘jas’ (22541)...

An alternative is to run shishid on an alternative port as a non-privileged user. To
continue the example of setting up the EXAMPLE.ORG realm as a non-privileged user from
the preceding section, we start the server listen on port 4711 via UDP on IPvA4.

jas@latte:~$ /usr/local/sbin/shishid -1 IPv4:*:4711/udp
Initializing GNUTLS...

Initializing GNUTLS...done

Listening on *:4711/tcp...

Listening on 1 ports...

shishid: Starting (GNUTLS €1.0.47)

shishid: Listening on *:4711/tcp socket 4

If you have set up the Shisa database as in the previous example, you can now acquire
tickets as follows.

jas@latte:”$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE. ORG

Enter password for ‘simon@EXAMPLE.ORG’:

simon@EXAMPLE.ORG:

Authtime: Fri Dec 12 01:41:01 2003

Endtime: Fri Dec 12 01:57:41 2003

Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-shal-96 (18)

Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-shal-96 (18)

Ticket flags: FORWARDED PROXIABLE RENEWABLE INITIAL (12)
jas@latte:"$

The output from Shishid on a successful invocation would look like:

shishid: Has 131 bytes from *:4711/udp on socket 4

shishid: Processing 131 from *:4711/udp on socket 4

shishid: Trying AS-REQ

shishid: AS-REQ from simon@EXAMPLE.ORG for krbtgt/EXAMPLE.ORGQ@EXAMPLE.ORG
shishid: Matching client etype 18 against user key etype 18

shishid: Have 511 bytes for *:4711/udp on socket 4

shishid: Sending 511 bytes to *:4711/udp socket 4 via UDP

shishid: Listening on *:4711/udp socket 4

You may use the -v’ parameter for Shishid and Shishi to generate more debugging
information.

To illustrate what an application, such as the Shishi patched versions of GNU Ish or
Telnet from GNU InetUtils, would do when contacting the host ‘mail.example.org’ we
illustrate using the TGS service as well.

jas@latte:”$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE.ORG host/mail.example.org
simon@EXAMPLE. ORG:

Chapter 3: Administration Manual 26

Authtime: Fri Dec 12 01:46:54 2003

Endtime: Fri Dec 12 02:03:34 2003

Server: host/mail.example.org key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by aes256-cts-hmac-shal-96 (18)

Ticket flags: FORWARDED PROXIABLE (45398796)
jas@latte:"$

This conclude our walk-through of setting up a new Kerberos realm using Shishi. It is
quite likely that one or more steps failed, and if so we encourage you to debug it and submit
a patch, or at least report it as a problem. Heck, even letting us know if you got this far
would be of interest. See Section 1.9 [Bug Reports], page 12.

3.5 Configuring DNS for KDC

Making sure the configuration files on all hosts running Shishi clients include the addresses
of your server is tedious. If the configuration files do not mention the KDC address for a
realm, Shishi will try to look up the information from DNS. In order for Shishi to find that
information, you need to add the information to DNS. For this to work well, you need to set
up a DNS zone with the same name as your Kerberos realm. The easiest is if you own the
publicly visible DNS name, such as ‘example.org’ if your realm is ‘EXAMPLE.QORG’, but you
can set up an internal DNS server with the information for your realm only. If this is done,
you do not need to keep configuration files updated for the KDC addressing information.

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names

In Kerberos, realm names are case sensitive. While it is strongly encouraged that all realm
names be all upper case this recommendation has not been adopted by all sites. Some sites
use all lower case names and other use mixed case. DNS on the other hand is case insensitive
for queries but is case preserving for responses to TXT queries. Since "MYREALM",
"myrealm", and "MyRealm" are all different it is necessary that only one of the possible
combinations of upper and lower case characters be used. This restriction may be lifted in
the future as the DNS naming scheme is expanded to support non-ASCII names.

3.5.2 Overview - KDC location information

KDC location information is to be stored using the DNS SRV RR [RFC 2052]. The format
of this RR is as follows:

Service.Proto.Realm TTL Class SRV Priority Weight Port Target
The Service name for Kerberos is always "_kerberos".

The Proto can be either "_udp", "_tcp", or "_tls._tcp". If these SRV records are to
be used, a "_udp" record MUST be included. If the Kerberos implementation supports
TCP transport, a "_tcp" record MUST be included. When using "_tcp" with "_kerberos",
this indicates a "raw" TCP connection without any additional encapsulation. A "_tls._tcp"
record MUST be specified for all Kerberos implementations that support communication
with the KDC across TCP sockets encapsulated using TLS [RFC2246] (see Section B.1
[STARTTLS protected KDC exchanges|, page 235).

The Realm is the Kerberos realm that this record corresponds to.

TTL, Class, SRV, Priority, Weight, and Target have the standard meaning as defined in
RFC 2052.

Chapter 3: Administration Manual 27

As per RFC 2052 the Port number should be the value assigned to "kerberos" by the
Internet Assigned Number Authority (88).

3.5.3 Example - KDC location information

These are DNS records for a Kerberos realm ASDF.COM. It has two Kerberos servers,
kdcl.asdf.com and kdc2.asdf.com. Queries should be directed to kdcl.asdf.com first as per
the specified priority. Weights are not used in these records.

_kerberos._udp.ASDF.COM. IN SRV 0 O 88 kdcl.asdf.com.
_kerberos._udp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 0 0 88 kdcl.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 0 O 88 kdcl.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.

3.5.4 Security considerations

As DNS is deployed today, it is an unsecure service. Thus the infor- mation returned by it
cannot be trusted.

Current practice for REALM to KDC mapping is to use hostnames to indicate KDC
hosts (stored in some implementation-dependent location, but generally a local config file).
These hostnames are vulnerable to the standard set of DNS attacks (denial of service,
spoofed entries, etc). The design of the Kerberos protocol limits attacks of this sort to
denial of service. However, the use of SRV records does not change this attack in any
way. They have the same vulnerabilities that already exist in the common practice of using
hostnames for KDC locations.

Implementations SHOULD provide a way of specifying this information locally without
the use of DNS. However, to make this feature worthwhile a lack of any configuration
information on a client should be interpretted as permission to use DNS.

3.6 Kerberos via TLS

If Shishi is built with support for GNUTLS, the messages exchanged between clients and
Shishid can be protected with TLS. TLS is only available over TCP connections. A full
discussion of the features TLS have is out of scope here, but in short it means the com-
munication is integrity and privacy protected, and that users can use OpenPGP, X.509 or
SRP (i.e., any mechanism supported by TLS) to authenticate themselves to the Kerberos
server. For details on the implementation, See Section B.1 [STARTTLS protected KDC
exchanges], page 235.

3.6.1 Setting up TLS resume

Resuming earlier TLS session is supported and enabled by default. This improves the speed
of the TLS handshake, because results from earlier negotiations can be re-used. Currently
the TLS resume database is stored in memory (in constract to storing it on disk), in both
the client and in the server. Because the server typically runs for a long time, this is not a
problem for that side. The client is typically not a long-running process though; the client
usually is invoked as part of applications like ‘telnet’ or ‘login’. However, because each
use of the client library typically result in a ticket, which is stored on disk and re-used by

Chapter 3: Administration Manual 28

later processes, this is likely not a serious problem because the number of different tickets
required by a user is usually quite small. For the client, TLS resume is typically only useful
when you perform an initial authentication (using a password) followed by a ticket request
for a service, in the same process.

You can configure the server, ‘shishid’ to never use TLS resume, or to increase or
decrease the number of distinct TLS connections that can be resumed before they are
garbage collected, see the ‘--resume-limit’ parameter (see Section 4.7 [Parameters for
shishid], page 48).

3.6.2 Setting up Anonymous TLS

Anonymous TLS is the simplest to set up and use. In fact, only the client need to be
informed that your KDC support TLS. This can be done in the configuration file with the
‘/tls’ parameter for ‘kdc-realm’ (see [Shishi Configuration|, page 44), or by placing the
KDC address in DNS using the ‘_t1s’ SRV record (see Section 3.5 [Configuring DNS for
KDC], page 26).

Let’s start Shishid, listening on a TCP socket. TLS require TCP. TCP sockets are
automatically upgraded to TLS if the client request it.

jas@latte:~$ /usr/local/sbin/shishid -1 IPv4:*:4711/tcp
Initializing GNUTLS...done

Listening on IPv4:*:4711/tcp...

Listening on 1 ports...

shishid: Starting (GNUTLS ‘1.0.4’)

shishid: Listening on IPv4:*:4711/tcp socket 4

Let’s use the client to talk with it, using TLS.

jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711/tls \
simon@EXAMPLE. ORG

Enter password for ‘simon@EXAMPLE.ORG’:

simon@EXAMPLE.ORG:

Authtime: Tue Dec 16 05:20:47 2003

Endtime: Tue Dec 16 05:37:27 2003

Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-shal-96 (18)

Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-shal-96 (18)

Ticket flags: FORWARDED PROXIABLE (12)
jas@latte:~$

On success, the server will print the following debug information.

shishid: Accepted socket 6 from socket 4 as IPv4:*:4711/tcp peer 127.0.0.1

shishid: Listening on IPv4:*:4711/tcp socket 4

shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6

shishid: Has 4 bytes from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6

shishid: Trying STARTTLS

shishid: TLS handshake negotiated protocol ‘TLS 1.0’, key exchange ‘Anon DH’, certfica
shishid: TLS anonymous authentication with 1024 bit Diffie-Hellman

shishid: Listening on IPv4:*:4711/tcp socket 4

shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6

shishid: Has 131 bytes from IPv4:#*:4711/tcp peer 127.0.0.1 on socket 6

Chapter 3: Administration Manual 29

shishid: Processing 131 from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying AS-REQ

shishid: AS-REQ from simon@EXAMPLE.ORG for krbtgt/EXAMPLE.ORGQ@EXAMPLE.ORG
shishid: Matching client etype 18 against user key etype 18

shishid: Have 511 bytes for IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Sending 511 bytes to IPv4:*:4711/tcp peer 127.0.0.1 socket 6 via TLS
shishid: Listening on IPv4:*:4711/tcp socket 4

shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6

shishid: Peer IPv4:*:4711/tcp peer 127.0.0.1 disconnected on socket 6
shishid: Closing IPv4:*:4711/tcp peer 127.0.0.1 socket 6

shishid: Listening on IPv4:*:4711/tcp socket 4

3.6.3 Setting up X.509 authenticated TLS

Setting up X.509 authentication is slightly more complicated than anonymous authentica-
tion. You need a X.509 certificate authority (CA) that can generate certificates for your
Kerberos server and Kerberos clients. It is often easiest to setup the CA yourself. Managing
a CA can be a daunting task, and we only give the bare essentials to get things up and
running. We suggest that you study the relevant literature. As a first step beyond this
introduction, you may wish to explore more secure forms of key storage than storing them
unencrypted on disk.

The following three sections describe how you create the CA, KDC certificate, and
client certificates. You can use any tool you like for this task, as long as they generate
X.509 (PKIX) certificates in PEM format and RSA keys in PKCS#1 format. Here we use
‘certtool’ that come with GNUTLS, which is widely available. We conclude by discussing
how you use these certificates in the KDC and in the Shishi client.

3.6.3.1 Create a Kerberos Certificate Authority

First create a CA key.

jas@latte:”$ certtool --generate-privkey \
-—outfile /usr/local/etc/shishi/shishi.key

Generating a private key...

Generating a 1024 bit RSA private key...

jas@latte:~$

Then create the CA certificate. Use whatever details you prefer.

jas@latte:”$ certtool --generate-self-signed \
--load-privkey /usr/local/etc/shishi/shishi.key \
--outfile /usr/local/etc/shishi/shishi.cert

Generating a self signed certificate...

Please enter the details of the certificate’s distinguished name. \

Just press enter to ignore a field.

Country name (2 chars): SE

Organization name: Shishi Example CA

Organizational unit name:

Locality name:

State or province name:

Common name: CA

Chapter 3: Administration Manual 30

This field should not be used in new certificates.
E-mail:
Enter the certificate’s serial number (decimal): O

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.

Does the certificate belong to an authority? (Y/N): y
Is this a web server certificate? (Y/N): n

Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Version: 3
Serial Number (hex): 00
Validity:
Not Before: Sun Dec 21 10:59:00 2003
Not After: Fri Jun 18 11:59:00 2004
Subject: C=SE,0=Shishi Example CA,CN=CA
Subject Public Key Info:
Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)
CA:TRUE

Is the above information ok? (Y/N): y

Signing certificate...
jas@latte:"$

3.6.3.2 Create a Kerberos KDC Certificate
First create the key for the KDC.

jas@latte:~$ certtool --generate-privkey \
--outfile /usr/local/etc/shishi/shishid.key

Generating a private key...

Generating a 1024 bit RSA private key...

jas@latte:"$

Then create actual KDC certificate, signed by the CA certificate created in the previous
step.

jas@latte:~$ certtool --generate-certificate \

Chapter 3: Administration Manual

--load-ca-certificate /usr/local/etc/shishi/shishi.cert \
--load-ca-privkey /usr/local/etc/shishi/shishi.key \
--load-privkey /usr/local/etc/shishi/shishid.key \
--outfile /usr/local/etc/shishi/shishid.cert

Generating a signed certificate...

Loading CA’s private key...

Loading CA’s certificate...

Please enter the details of the certificate’s distinguished name. \

Just press enter to ignore a field.

Country name (2 chars): SE

Organization name: Shishi Example KDC

Organizational unit name:

Locality name:

State or province name:

Common name: KDC

This field should not be used in new certificates.

E-mail:

Enter the certificate’s serial number (decimal): O

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.

Does the certificate belong to an authority? (Y/N): n
Is this a web server certificate? (Y/N): n

Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Version: 3
Serial Number (hex): 00
Validity:
Not Before: Sun Dec 21 11:02:00 2003
Not After: Fri Jun 18 12:02:00 2004
Subject: C=SE,0=Shishi Example KDC,CN=KDC
Subject Public Key Info:
Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)

CA:FALSE

Is the above information ok? (Y/N): y

Chapter 3: Administration Manual 32

Signing certificate...
jas@latte:~$

3.6.3.3 Create a Kerberos Client Certificate

First create the key for the client.

jas@latte:~$ certtool --generate-privkey \
--outfile ~/.shishi/client.key

Generating a private key...

Generating a 1024 bit RSA private key...

jas@latte:~$

Then create the client certificate, signed by the CA. An alternative would be to have
the KDC sign the client certificates.

jas@latte:™$ certtool --generate-certificate \
—--load-ca-certificate /usr/local/etc/shishi/shishi.cert \
--load-ca-privkey /usr/local/etc/shishi/shishi.key \
--load-privkey ~/.shishi/client.key \
—--outfile ~/.shishi/client.certs

Generating a signed certificate...

Loading CA’s private key...

Loading CA’s certificate...

Please enter the details of the certificate’s distinguished name. \

Just press enter to ignore a field.

Country name (2 chars): SE

Organization name: Shishi Example Client

Organizational unit name:

Locality name:

State or province name:

Common name: Client

This field should not be used in new certificates.

E-mail:

Enter the certificate’s serial number (decimal): O

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.

Does the certificate belong to an authority? (Y/N): n
Is this a web server certificate? (Y/N): n

Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Chapter 3: Administration Manual 33

Version: 3
Serial Number (hex): 00
Validity:
Not Before: Sun Dec 21 11:04:00 2003
Not After: Fri Jun 18 12:04:00 2004
Subject: C=SE,0=Shishi Example Client,CN=Client
Subject Public Key Info:
Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)
CA:FALSE

Is the above information ok? (Y/N): y

Signing certificate...
jas@latte:~$

3.6.3.4 Starting KDC with X.509 authentication support

The KDC need the CA certificate (to verify client certificates) and the server certificate
and key (to authenticate itself to the clients). See elsewhere (see Section 4.7 [Parameters
for shishid], page 48) for the entire description of the parameters.

jas@latte:~$ shishid -1 *:4711/tcp \
--x509cafile /usr/local/etc/shishi/shishi.cert \
--x509certfile /usr/local/etc/shishi/shishid.cert \
--x509keyfile /usr/local/etc/shishi/shishid.key

Initializing GNUTLS...

Parsed 1 CAs...

Loaded server certificate/key...

Generating Diffie-Hellman parameters...

Initializing GNUTLS...done

Listening on *:4711/tcp...

Listening on 1 ports...

shishid: Starting (GNUTLS €1.0.4°)

shishid: Listening on *:4711/tcp socket 4

Then acquire tickets as usual. In case you wonder how shishi finds the client certificate
and key, the filenames used above when generating the client certificates happen to be the
default filenames for these files. So it pick them up automatically.

jas@latte:”$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711/tls’ \
simon@EXAMPLE.ORG

Enter password for ‘simon@EXAMPLE.QRG’:

simon@EXAMPLE.ORG:

Authtime: Sun Dec 21 11:15:47 2003

Endtime: Sun Dec 21 11:32:27 2003

Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-shal-96 (18)

Chapter 3: Administration Manual 34

Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-shal-96 (18)
Ticket flags: FORWARDED PROXIABLE RENEWABLE HWAUTHENT TRANSITEDPOLICYCHECKED OKASDEL

jas@latte:~$
Here is what the server would print.

shishid: Accepted socket 6 from socket 4 as *:4711/tcp peer 127.0.0.1
shishid: Listening on *:4711/tcp socket 4

shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6

shishid: Has 4 bytes from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying STARTTLS

shishid: TLS handshake negotiated protocol ‘TLS 1.0’, key exchange ‘RSA’, certficate t
shishid: TLS client certificate ‘C=SE,0=Shishi Example Client,CN=Client’, issued by ‘C

shishid: Listening on *:4711/tcp socket 4

shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6

shishid: Has 131 bytes from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Processing 131 from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying AS-REQ

shishid: AS-REQ from simon@EXAMPLE.ORG for krbtgt/EXAMPLE.ORG@EXAMPLE.ORG

shishid: Matching client etype 18 against user key etype 18
shishid: Have 511 bytes for *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Sending 511 bytes to *:4711/tcp peer 127.0.0.1 socket 6 via TLS
shishid: Listening on *:4711/tcp socket 4

shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6
shishid: Peer *:4711/tcp peer 127.0.0.1 disconnected on socket 6
shishid: Closing *:4711/tcp peer 127.0.0.1 socket 6

shishid: Listening on *:4711/tcp socket 4

3.7 Multiple servers

Setting up multiple servers is as easy as replicating the user database. Since the default
‘file’ user database is stored in the normal file system, you can use any common tools to
replicate a file system. Network file system like NFS (properly secured by, e.g., a point-to-
point symmetrically encrypted IPSEC connection) and file synchronizing tools like ‘rsync’
are typical choices.

The secondary server should be configured just like the master server. If you use the
‘file’ database over NFS you do not have to make any modifications. If you use, e.g., a
cron job to ‘rsync’ the directory every hour or so, you may want to add a ‘--read-only’
flag to the Shisa ‘db’ definition (see Section 4.5 [Shisa Configuration], page 46). That way,
nobody will be lured into creating or changing information in the database on the secondary
server, which only would be overwritten during the next synchronization.

db --read-only file /usr/local/var/backup-shishi

The ‘file’ database is designed so it doesn’t require file locking in the file system, which
may be unreliable in some network file systems or implementations. It is also designed
so that multiple concurrent readers and writers may access the database without causing
corruption.

Warning: The last paragraph is currently not completely accurate. There may be race
conditions with concurrent writers. None should cause infinite loops or data loss. However,

Chapter 3: Administration Manual 35

unexpected results might occur if two writers try to update information about a principal
simultaneous.

If you use a remote LDAP server or SQL database to store the user database, and access
it via a Shisa backend, you have make sure your Shisa backend handle concurrent writers
properly. If you use a modern SQL database, this probably is not a concern. If it is a
problem, you may be able to work around it by implementing some kind of synchronization
or semaphore mechanism. If all else sounds too complicated, you can set up the secondary
servers as ‘--read-only’ servers, although you will lose some functionality (like changing
passwords via the secondary server, or updating timestamps when the last ticket request

occurred).

One function that is of particular use for users with remote databases (be it LDAP
or SQL) is the “database override” feature. Using this you can have the security critical
principals (such as the ticket granting ticket) stored on local file system storage, but use the
remote database for user principals. Of course, you must keep the local file system storage
synchronized between all servers, as before. Here is an example configuration.

db --read-only file /var/local/master
db ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem

This instruct the Shisa library to access the two databases sequentially, for each
query using the first database that know about the requested principal. If you put
the ‘krbtgt/REALM’ principal in the local ‘file’ database, this will override the LDAP
interface. Naturally, you can have as many ‘db’ definition lines as you wish.

Users with remote databases can also investigate a so called High Awvailability mode.
This is useful if you wish to have your Kerberos servers be able to continue to operate even
when the remote database is offline. This is achieved via the ‘--ignore-errors’ flag in the
database definition. Here is a sample configuration.

db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --read-only file /var/cache/ldap-copy

This instruct the Shisa library to try the LDAP backend first, but if it fails, instead
of returning an error, continue to try the operation on a read only local ‘file’ based
database. Of course, write requests will still fail, but it may be better than halting the
server completely. To make this work, you first need to set up a cron job on a, say, hourly
basis, to make a copy of the remote database and store it in the local file database. That
way, when the remote server goes away, fairly current information will still be available
locally.

If you also wish to experiment with read-write fail over, here is an idea for the configu-
ration.

db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --ignore-errors --read-only file /var/cache/ldap-copy
db file /var/cache/local-updates

This is similar to the previous, but it will ignore errors reading and writing from the
first two databases, ultimately causing write attempts to end up in the final ‘file’ based
database. Of course, you would need to create tools to feed back any local updates made
while the remote server was down. It may also be necessary to create a special backend for
this purpose, which can auto create principals that are used.

We finish with an example that demonstrate all the ideas presented.

Chapter 3: Administration Manual 36

db --read-only file /var/local/master

db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --ignore-errors --read-only file /var/cache/ldap-copy

db file /var/cache/local-updates

3.8 Developer information

The Programming API for Shisa is described below (see Section 5.19 [Kerberos Database
Functions|, page 225); this section is about extending Shisa, and consequently Shishi, to
use your own user database system. You may want to store your Kerberos user information
on an LDAP database server, for example.

Adding a new backend is straight forward. You need to implement the backend API
function set, add the list of API functions to ‘db/db.c’ and possibly also add any library
dependencies to the Makefile.

The simplest way to write a new backend is to start from the existing ‘file’ based
database, in ‘db/file.c’, and modify the entry points as needed.

Note that the current backend API will likely change before it is frozen. We may describe
it in detail here when it has matured. However, currently it is similar to the external Shisa
API (see Section 5.19 [Kerberos Database Functions|, page 225).

There should be no need to modify anything else in the Shisa library, and certainly not
in the Shishi library or the ‘shishid’ server.

Naturally, we would appreciate if you would send us your new backend, if you believe it
is generally useful (see Section 1.9 [Bug Reports|, page 12).

Chapter 4: Reference Manual 37

4 Reference Manual

This chapter discuss the underlying assumptions of Kerberos, contain a glossary to Kerberos
concepts, give you background information on choosing realm and principal names, and
describe all parameters and configuration file syntaxes for the Shishi tools.

4.1 Environmental Assumptions

Kerberos imposes a few assumptions on the environment in which it can properly function:

e "Denial of service" attacks are not solved with Kerberos. There are places in the
protocols where an intruder can prevent an application from participating in the proper
authentication steps. Detection and solution of such attacks (some of which can appear
to be not-uncommon "normal" failure modes for the system) is usually best left to the
human administrators and users.

e Principals MUST keep their secret keys secret. If an intruder somehow steals a princi-
pal’s key, it will be able to masquerade as that principal or impersonate any server to
the legitimate principal.

e "Password guessing" attacks are not solved by Kerberos. If a user chooses a poor
password, it is possible for an attacker to successfully mount an offline dictionary
attack by repeatedly attempting to decrypt, with successive entries from a dictionary,
messages obtained which are encrypted under a key derived from the user’s password.

e FEach host on the network MUST have a clock which is "loosely synchronized" to the
time of the other hosts; this synchronization is used to reduce the bookkeeping needs
of application servers when they do replay detection. The degree of "looseness" can
be configured on a per-server basis, but is typically on the order of 5 minutes. If the
clocks are synchronized over the network, the clock synchronization protocol MUST
itself be secured from network attackers.

e Principal identifiers are not recycled on a short-term basis. A typical mode of access
control will use access control lists (ACLSs) to grant permissions to particular principals.
If a stale ACL entry remains for a deleted principal and the principal identifier is reused,
the new principal will inherit rights specified in the stale ACL entry. By not re-using
principal identifiers, the danger of inadvertent access is removed.

4.2 Glossary of terms

Authentication
Verifying the claimed identity of a principal.

Authentication header
A record containing a Ticket and an Authenticator to be presented to a server
as part of the authentication process.

Authentication path
A sequence of intermediate realms transited in the authentication process when
communicating from one realm to another.

Authenticator
A record containing information that can be shown to have been recently gen-
erated using the session key known only by the client and server.

Chapter 4: Reference Manual 38

Authorization

Capability

Ciphertext

Client

Credentials

The process of determining whether a client may use a service, which objects
the client is allowed to access, and the type of access allowed for each.

A token that grants the bearer permission to access an object or service. In
Kerberos, this might be a ticket whose use is restricted by the contents of the
authorization data field, but which lists no network addresses, together with
the session key necessary to use the ticket.

The output of an encryption function. Encryption transforms plaintext into
ciphertext.

A process that makes use of a network service on behalf of a user. Note that
in some cases a Server may itself be a client of some other server (e.g. a print
server may be a client of a file server).

A ticket plus the secret session key necessary to successfully use that ticket in
an authentication exchange.

Encryption Type (etype)

KDC

Kerberos

When associated with encrypted data, an encryption type identifies the algo-
rithm used to encrypt the data and is used to select the appropriate algorithm
for decrypting the data. Encryption type tags are communicated in other mes-
sages to enumerate algorithms that are desired, supported, preferred, or allowed
to be used for encryption of data between parties. This preference is combined
with local information and policy to select an algorithm to be used.

Key Distribution Center, a network service that supplies tickets and temporary
session keys; or an instance of that service or the host on which it runs. The
KDC services both initial ticket and ticket-granting ticket requests. The initial
ticket portion is sometimes referred to as the Authentication Server (or service).
The ticket-granting ticket portion is sometimes referred to as the ticket-granting
server (or service).

The name given to the Project Athena’s authentication service, the protocol
used by that service, or the code used to implement the authentication service.
The name is adopted from the three-headed dog which guards Hades.

Key Version Number (kvno)

Plaintext

Principal

A tag associated with encrypted data identifies which key was used for encryp-
tion when a long lived key associated with a principal changes over time. It is
used during the transition to a new key so that the party decrypting a message
can tell whether the data was encrypted using the old or the new key.

The input to an encryption function or the output of a decryption function.
Decryption transforms ciphertext into plaintext.

A named client or server entity that participates in a network communication,
with one name that is considered canonical.

Principal identifier

The canonical name used to uniquely identify each different principal.

Chapter 4: Reference Manual 39

Seal To encipher a record containing several fields in such a way that the fields
cannot be individually replaced without either knowledge of the encryption key
or leaving evidence of tampering.

Secret key An encryption key shared by a principal and the KDC, distributed outside
the bounds of the system, with a long lifetime. In the case of a human user’s
principal, the secret key MAY be derived from a password.

Server A particular Principal which provides a resource to network clients. The server
is sometimes referred to as the Application Server.

Service A resource provided to network clients; often provided by more than one server
(for example, remote file service).

Session key
A temporary encryption key used between two principals, with a lifetime limited
to the duration of a single login "session". In the Kerberos system, a session
key is generated by the KDC. The session key is distinct from the sub-session
key, described next..

Sub-session key
A temporary encryption key used between two principals, selected and ex-
changed by the principals using the session key, and with a lifetime limited
to the duration of a single association. The sub- session key is also referred to
as the subkey.

Ticket A record that helps a client authenticate itself to a server; it contains the client’s
identity, a session key, a timestamp, and other information, all sealed using the
server’s secret key. It only serves to authenticate a client when presented along
with a fresh Authenticator.

4.3 Realm and Principal Naming

This section contains the discussion on naming realms and principals from the Kerberos
specification.

4.3.1 Realm Names

Although realm names are encoded as GeneralStrings and although a realm can technically
select any name it chooses, interoperability across realm boundaries requires agreement on
how realm names are to be assigned, and what information they imply.

To enforce these conventions, each realm MUST conform to the conventions itself, and
it MUST require that any realms with which inter-realm keys are shared also conform to
the conventions and require the same from its neighbors.

Kerberos realm names are case sensitive. Realm names that differ only in the case of
the characters are not equivalent. There are presently three styles of realm names: domain,
X500, and other. Examples of each style follow:

domain: ATHENA .MIT.EDU
X500: C=US/0=0SF
other: NAMETYPE:rest/of .name=without-restrictions

Chapter 4: Reference Manual 40

Domain syle realm names MUST look like domain names: they consist of components
separated by periods (.) and they contain neither colons (:) nor slashes (/). Though domain
names themselves are case insensitive, in order for realms to match, the case must match
as well. When establishing a new realm name based on an internet domain name it is
recommended by convention that the characters be converted to upper case.

X.500 names contain an equal (=) and cannot contain a colon (:) before the equal. The
realm names for X.500 names will be string representations of the names with components
separated by slashes. Leading and trailing slashes will not be included. Note that the slash
separator is consistent with Kerberos implementations based on RFC1510, but it is different
from the separator recommended in RFC2253.

Names that fall into the other category MUST begin with a prefix that contains no equal
(=) or period (.) and the prefix MUST be followed by a colon (:) and the rest of the name.
All prefixes must be assigned before they may be used. Presently none are assigned.

The reserved category includes strings which do not fall into the first three categories.
All names in this category are reserved. It is unlikely that names will be assigned to this
category unless there is a very strong argument for not using the ’other’ category.

These rules guarantee that there will be no conflicts between the various name styles.
The following additional constraints apply to the assignment of realm names in the domain
and X.500 categories: the name of a realm for the domain or X.500 formats must either be
used by the organization owning (to whom it was assigned) an Internet domain name or
X.500 name, or in the case that no such names are registered, authority to use a realm name
MAY be derived from the authority of the parent realm. For example, if there is no domain
name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can authorize the
creation of a realm with that name.

This is acceptable because the organization to which the parent is assigned is presumably
the organization authorized to assign names to its children in the X.500 and domain name
systems as well. If the parent assigns a realm name without also registering it in the domain
name or X.500 hierarchy, it is the parent’s responsibility to make sure that there will not
in the future exist a name identical to the realm name of the child unless it is assigned to
the same entity as the realm name.

4.3.2 Principal Names

As was the case for realm names, conventions are needed to ensure that all agree on what
information is implied by a principal name. The name-type field that is part of the principal
name indicates the kind of information implied by the name. The name-type SHOULD be
treated only as a hint to interpreting the meaning of a name. It is not significant when
checking for equivalence. Principal names that differ only in the name-type identify the
same principal. The name type does not partition the name space. Ignoring the name type,
no two names can be the same (i.e. at least one of the components, or the realm, MUST
be different). The following name types are defined:

name-type value meaning
NT-UNKNOWN 0 Name type not known
NT-PRINCIPAL 1 Just the name of the principal as in DCE, or for users

NT-SRV-INST 2 Service and other unique instance (krbtgt)

Chapter 4: Reference Manual 41

NT-SRV-HST 3 Service with host name as instance (telnet, rcommands)
NT-SRV-XHST 4 Service with host as remaining components

NT-UID 5 Unique ID

NT-X500-PRINCIPAL 6 Encoded X.509 Distingished name [RFC 2253]
NT-SMTP-NAME 7 Name in form of SMTP email name (e.g. user@foo.com)

NT-ENTERPRISE 10 Enterprise name - may be mapped to principal name

When a name implies no information other than its uniqueness at a particular time the
name type PRINCIPAL SHOULD be used. The principal name type SHOULD be used
for users, and it might also be used for a unique server. If the name is a unique machine
generated ID that is guaranteed never to be reassigned then the name type of UID SHOULD
be used (note that it is generally a bad idea to reassign names of any type since stale entries
might remain in access control lists).

If the first component of a name identifies a service and the remaining components
identify an instance of the service in a server specified manner, then the name type of SRV-
INST SHOULD be used. An example of this name type is the Kerberos ticket-granting
service whose name has a first component of krbtgt and a second component identifying
the realm for which the ticket is valid.

If the first component of a name identifies a service and there is a single component
following the service name identifying the instance as the host on which the server is running,
then the name type SRV- HST SHOULD be used. This type is typically used for Internet
services such as telnet and the Berkeley R commands. If the separate components of the
host name appear as successive components following the name of the service, then the
name type SRV-XHST SHOULD be used. This type might be used to identify servers on
hosts with X.500 names where the slash (/) might otherwise be ambiguous.

A name type of NT-X500-PRINCIPAL SHOULD be used when a name from an X.509
certificate is translated into a Kerberos name. The encoding of the X.509 name as a Kerberos
principal shall conform to the encoding rules specified in RFC 2253.

A name type of SMTP allows a name to be of a form that resembles a SMTP email
name. This name, including an "@" and a domain name, is used as the one component of
the principal name.

A name type of UNKNOWN SHOULD be used when the form of the name is not known.
When comparing names, a name of type UNKNOWN will match principals authenticated
with names of any type. A principal authenticated with a name of type UNKNOWN,
however, will only match other names of type UNKNOWN.

Names of any type with an initial component of ’krbtgt’ are reserved for the Kerberos
ticket granting service. See [Name of the TGS], page 42, for the form of such names.

4.3.2.1 Name of server principals

The principal identifier for a server on a host will generally be composed of two parts: (1)
the realm of the KDC with which the server is registered, and (2) a two-component name
of type NT-SRV-HST if the host name is an Internet domain name or a multi-component
name of type NT-SRV-XHST if the name of the host is of a form such as X.500 that allows
slash (/) separators. The first component of the two- or multi-component name will identify
the service and the latter components will identify the host. Where the name of the host is
not case sensitive (for example, with Internet domain names) the name of the host MUST

Chapter 4: Reference Manual 42

be lower case. If specified by the application protocol for services such as telnet and the
Berkeley R commands which run with system privileges, the first component MAY be the
string "host’ instead of a service specific identifier.

4.3.2.2 Name of the TGS

The principal identifier of the ticket-granting service shall be composed of three parts:
(1) the realm of the KDC issuing the TGS ticket (2) a two-part name of type NT-SRV-
INST, with the first part "krbtgt" and the second part the name of the realm which
will accept the ticket-granting ticket. For example, a ticket-granting ticket issued by the
ATHENA.MIT.EDU realm to be used to get tickets from the ATHENA.MIT.EDU KDC has
a principal identifier of "ATHENA.MIT.EDU" (realm), ("krbtgt", "ATHENA.MIT.EDU")
(name). A ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be used to
get tickets from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU"
(realm), ("krbtgt", "MIT.EDU") (name).

4.3.3 Choosing a principal with which to communicate

The Kerberos protocol provides the means for verifying (subject to the assumptions in
Section 4.1 [Environmental Assumptions|, page 37) that the entity with which one com-
municates is the same entity that was registered with the KDC using the claimed identity
(principal name). It is still necessary to determine whether that identity corresponds to the
entity with which one intends to communicate.

When appropriate data has been exchanged in advance, this determination may be
performed syntactically by the application based on the application protocol specification,
information provided by the user, and configuration files. For example, the server principal
name (including realm) for a telnet server might be derived from the user specified host
name (from the telnet command line), the "host/" prefix specified in the application protocol
specification, and a mapping to a Kerberos realm derived syntactically from the domain
part of the specified hostname and information from the local Kerberos realms database.

One can also rely on trusted third parties to make this determination, but only when
the data obtained from the third party is suitably integrity protected while resident on
the third party server and when transmitted. Thus, for example, one should not rely on
an unprotected domain name system record to map a host alias to the primary name of a
server, accepting the primary name as the party one intends to contact, since an attacker can
modify the mapping and impersonate the party with which one intended to communicate.

Implementations of Kerberos and protocols based on Kerberos MUST NOT use insecure
DNS queries to canonicalize the hostname components of the service principal names. In
an environment without secure name service, application authors MAY append a statically
configured domain name to unqualified hostnames before passing the name to the security
mechanisms, but should do no more than that. Secure name service facilities, if available,
might be trusted for hostname canonicalization, but such canonicalization by the client
SHOULD NOT be required by KDC implementations.

Implementation note: Many current implementations do some degree of canonicalization
of the provided service name, often using DNS even though it creates security problems.
However there is no consistency among implementations about whether the service name is
case folded to lower case or whether reverse resolution is used. To maximize interoperability
and security, applications SHOULD provide security mechanisms with names which result

Chapter 4: Reference Manual 43

from folding the user-entered name to lower case, without performing any other modifica-
tions or canonicalization.

4.3.4 Principal Name Form

Principal names consist of a sequence of strings, which is often tedious to parse. Therefor,
Shishi often uses a “printed” form of principal which embed the entire principal name
string sequence, and optionally also the realm, into one string. The format is taken from
the Kerberos 5 GSS-API mechanism (RFC 1964).

The elements included within this name representation are as follows, proceeding from
the beginning of the string:

1. Omne or more principal name components; if more than one principal name component is
included, the components are separated by ‘/¢. Arbitrary octets may be included within
principal name components, with the following constraints and special considerations:

a. Any occurrence of the characters ‘@ or ‘/* within a name component must be
immediately preceded by the ‘* quoting character, to prevent interpretation as a
component or realm separator.

b. The ASCII newline, tab, backspace, and null characters may occur directly within
the component or may be represented, respectively, by ‘\n‘, ‘\t‘, ‘\b‘, or ‘\0°.

c. If the ‘\‘ quoting character occurs outside the contexts described in (1a) and (1b)
above, the following character is interpreted literally. As a special case, this allows
the doubled representation ‘\\‘ to represent a single occurrence of the quoting
character.

d. An occurrence of the ‘\‘ quoting character as the last character of a component is
illegal.

2. Optionally, a ‘@ character, signifying that a realm name immediately follows. If no
realm name element is included, the local realm name is assumed. The ¢/¢ | “:‘, and null
characters may not occur within a realm name; the ‘@, newline, tab, and backspace
characters may be included using the quoting conventions described in (1a), (1b), and
(1c) above.

4.4 Shishi Configuration

The valid configuration file tokens are described here. The user configuration file is typically
located in ‘~/.shishi/shishi.conf’ (compare ‘shishi --configuration-file’) and the
system configuration is typically located in ‘/usr/local/etc/shishi/shishi.conf’ (com-
pare ‘shishi --system-configuration-file’). If the first non white space character of a
line is a ’#’, the line is ignored. Empty lines are also ignored.

All tokens are valid in both the system and the user configuration files, and have the same
meaning. However, as the system file is supposed to apply to all users on a system, it would
not make sense to use some tokens in that file. For example, the ‘default-principal’ is
rarely useful in a system configuration file.

4.4.1 ‘default-realm’

Specify the default realm, by default the hostname of the host is used. E.g.,
default-realm JOSEFSSON.ORG

Chapter 4: Reference Manual 44

4.4.2 ‘default-principal’
Specify the default principal, by default the login username is used. E.g.,

default-principal jas

4.4.3 ‘client-kdc-etypes’

Specify which encryption types client asks server to respond in during AS/TGS exchanges.
List valid encryption types, in preference order. Supported algorithms include aes256-
cts-hmac-shal-96, aes128-cts-hmac-shal-96, des3-cbc-shal-kd, des-cbc-md5, des-cbc-md4,
des-cbc-crc and null. This option also indicates which encryption types are accepted by the
client when receiving the response. Note that the preference order is not cryptographically
protected, so a man in the middle can modify the order without being detected. Thus, only
specify encryption types you trust completely here. The default only includes aes256-cts-
hmac-shal-96, as suggested by RFC1510bis. E.g.,

client-kdc-etypes=aes256-cts-hmac-shal-96 des3-cbc-shal-kd des-cbc-mdb

4.4.4 ‘verbose’, ‘verbose-asnl’, ‘verbose-noise’, ‘verbose-crypto’,
‘verbose-crypto-noise’

Enable verbose library messages. E.g.,

verbose
verbose-noise

4.4.5 ‘realm-kdc’
Specify KDC addresses for realms. Value is ‘REALM,KDCADDRESS [/TRANSPORT] [,KDCADDRESS [/TRANSPORT] . . .
KDCADDRESS is the hostname or IP address of KDC.

Optional TRANSPORT is “udp” for UDP, “tcp” for TCP, and “tls” for TLS
connections. By default UDP is tried first, and TCP used as a fallback if the
KRB_ERR_RESPONSE_TOO_BIG error is received.

If not specified, Shishi tries to locate the KDC using SRV RRs, which is recommended.
This option should normally only be used during experiments, or to access badly maintained
realms.

realm-kdc=JOSEFSSON.ORG,ristretto. josefsson.org

4.4.6 ‘server-realm’
Specify realm for servers. Value is ‘REALM, SERVERREGEXP [, SERVERREGEXP. . .]".

SERVERREGEXP is a regular expression matching servers in the realm. The first match
is used. E.g.,

server-realm=JOSEFSSON.ORG, . josefsson.org

Note: currently not used.

4.4.7 ‘kdc-timeout’, ‘kdc-retries’

How long shishi waits for a response from a KDC before continuing to next KDC for realm.
The default is 5 seconds. E.g.,

Chapter 4: Reference Manual 45

kdc-timeout=10

How many times shishi sends a request to a KDC before giving up. The default is 3
times. E.g.,

kdc-retries=5

4.4.8 ‘stringprocess’
How username and passwords entered from the terminal, or taken from the command line,
are processed.

"none": no processing is used.

"stringprep": convert from locale charset to UTF-8 and process using experimental RFC
1510 stringprep profile.

It can also be a string indicating a character set supported by iconv via libstringprep,
in which case data is converted from locale charset into the indicated character set. E.g.,
UTF-8, ISO-8859-1, KOI-8, EBCDIC-IS-FRISS are supported on GNU systems. On some
systems you can use "locale -m" to list available character sets. By default, the "none"
setting is used which is consistent with RFC 1510 that is silent on the issue. In practice,
however, converting to UTF-8 improves interoperability.

E.g.,

stringprocess=UTF-8

4.4.9 ‘ticket-life’
Specify default ticket life time.

The string can be in almost any common format. It can contain month names, time
zones, ‘am’ and ‘pm’, ‘yesterday’, ‘ago’, ‘next’, etc. See Section 4.10 [Date input formats],
page 51, for the long story.

As an extra feature, if the time specified by your string correspond to a time during the
last 24 hours, an extra day is added to it. This allows you to specify relative times such as

"17:00" to always mean the next 17:00, even if your system clock happens to be 17:30.
The default is 8 hours.
E.g.,
#ticket-1life=8 hours
#ticket-life=1 day
ticket-1ife=17:00

4.4.10 ‘renew-1life’

Specify how long a renewable ticket should remain renewable.
See ticket-life for the syntax. The extra feature that handles negative values within the
last 2 hours is not active here.
The default is 7 days.
E.g.,
#renew-life=1 week
#renew-life=friday 17:00
renew-life=sunday

Chapter 4: Reference Manual 46

4.5 Shisa Configuration

The configuration file for Shisa is typically stored in ‘/usr/local/etc/shishi/shisa.conf’.
If the first non white space character of a line is a ’#’, the line is ignored. Empty lines are
also ignored.

4.5.1 ‘dp’

Currently the only configuration options available is the db token that define the databases
to use. The syntax is:

db [OPTIONS] <TYPE> [LOCATION] [PARAMETERS ...]

Specify the data sources for Kerberos 5 data. Multiple entries, even of the same data
source type, are allowed. The data sources are accessed in the same sequence as they are
defined here. If an entry is found in one data source, it will be used for the operations,
without searching the remaining data sources. Valid OPTIONS include:

--read-only No data is written to this data source.
--ignore-errors Ignore failures in this backend.

The default (when the configuration file is empty) uses one "file" data source (see below),
but for a larger installation you may want to combine several data sources. Here is an
example.

db --read-only file /var/local/master
db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --read-only file /var/cache/ldap-copy

This demonstrate how you can store critical principals on local disk (the first entry,
/var/local/master) that will always be found without looking in the LDAP directory. The
critical principals could be, e.g., krbtgt/EXAMPLE.ORG. The second entry denote a LDAP
server that could hold user principals. As you can see, Shisa will not let the caller know
about errors with the LDAP source (they will be logged, however). Instead, if for instance
the LDAP server has crashed, Shisa would continue and read from the /var/cache/ldap-
copy file source. That file source may have been set up to contain a copy of the data in
the LDAP server, perhaps made on an hourly basis, so that your server will be able to
serve recent data even in case of a crash. Any updates or passwords change requests will
however not be possible while the LDAP server is inaccessible, to reduce the problem of
synchronizing data back into the LDAP server once it is online again.

Currently only the "file" data source is supported, and denote a data source that use
the standard file system for storage.

Valid syntaxes for the "file" database:
db file PATH
Examples:

db file /var/shishi
db file /usr/share/shishi read-only

If no ‘db’ tokens are present, the default will be:
db file /usr/local/var/shishi

Chapter 4: Reference Manual

4.6 Parameters for shishi

47

If no command is given, Shishi try to make sure you have a ticket granting ticket for the

default realm, and then display it.

Mandatory arguments to long options are mandatory for short options too.
Usage: shishi [OPTIONS]... [CLIENT [SERVER]]...

-h, --help
-V, —--version

Commands :
-d, --destroy

-1, --list
-r, --renew
Flags:
—--forwardable
—-—forwarded
—--proxiable
—--proxy
—--renewable
Options:

--client-name=NAME

-E, --encryption-type=ETYPE, [ETYPE...]

-e, —-—endtime=STRING

Print help and exit
Print version and exit

Destroy tickets in local cache,
limited by any --client-name or
--server-name. (default=off)

List tickets in local cache, limited
by any --client-name and
--server-name. (default=off)

Renew ticket. Use —--server-name to
specify ticket, default is the
most recent renewable ticket
granting ticket for the default
realm. (default=off)

Get a forwardable ticket, i.e., one
that can be used to get forwarded
tickets. (default=off)

Get a forwarded ticket. (default=
off)

Get a proxiable ticket, i.e., one
that can be used to get proxy
tickets. (default=off)

Get a proxy ticket. (default=off)

Get a renewable ticket. (default=
off)

Client name. Default is login
username.

Encryption types to use. ETYPE is
either registered name or integer.
Valid values include ’aes128’,
’aes256’, ’aes’ (same as
’aes256’), ’3des’, ’des-md5’,
’des—md4’, ’des-crc’, ’des’ (same
as ’des-md5’), and ’arcfour’.

Specify when ticket validity should

Chapter 4: Reference Manual

—--realm=STRING
—--renew-til1=STRING

--server-name=NAME

-s, —--starttime=STRING

-—ticket-granter=NAME

Other options:
--configuration-file=FILE
-c, ——ticket-file=FILE
-0, ——library-options=STRING
-q, —-quiet
--system-configuration-file=FILE
——ticket-write-file=FILE

-v, —-verbose

4.7 Parameters for shishid

48

expire. The time syntax may be
relative (to the start time), such
as ’20 hours’, or absolute, such
as ’2001-02-03 04:05:06 CET’. The
default is 8 hours after the start
time.

Set default realm.

Specify renewable life of ticket.
Implies --renewable. Accepts same
time syntax as --endtime. If
--renewable is specified, the
default is 1 week after the start
time.

Server name. Default is
’krbtgt/REALM’ where REALM is
client realm.

Specify when ticket should start to
be valid. Accepts same time
syntax as --endtime. The default
is to become valid immediately.

Service name in ticket to use for
authenticating request. Only for
TGS. Defaults to
’krbtgt/REALMOREALM’ where REALM
is client realm.

Read user configuration from FILE.
Read tickets from FILE.
Parse STRING as a configuration file
statement.
Don’t produce any diagnostic output.
(default=off)

Read system configuration from FILE.
Write tickets from FILE. Default is
to write them back to where they

were read from.
Produce verbose output.
(default=off)

If no parameters are specified, ‘shishid’ listens on the defaults interfaces and answers

incoming requests using the keys in the default key file.

Mandatory arguments to long options are mandatory for short options too.

Usage: shishid [OPTIONS]...

Chapter 4: Reference Manual

-h, —--help
-V, --version
Commands:

49

Print help and exit
Print version and exit

-1, --listen=[FAMILY:]ADDR:PORT/TYPE

-u,

--setuid=NAME

TLS settings:

Other
-c,

-q,

--no-tls
—--x509cafile=FILE

—--x509certfile=FILE
--x509crlfile=FILE

-—-x509keyfile=FILE
—--resume-1imit=SHORT

options:

--configuration-file=FILE

—--verbose

--quiet

4.8 Parameters for shisa

Sockets to listen for queries on. Family is
‘IPv4’ or ‘IPv6’, if absent the family is
decided by gethostbyname (ADDR). An address of
‘%’ indicates all addresses on the local
host. The default is ‘*:kerberos/udp,
*:kerberos/tcp’.

After binding socket, set user identity.

Disable TLS support (default=off)

X.509 certificate authorities used to verify
client certificates, in PEM format.

X.509 server certificate, in PEM format.

X.509 certificate revocation list to check for
revoked client certificates, in PEM format.

X.509 server certificate key, in PEM format.

Keep track of up to this many TLS sessions for
resume purposes (0 to disable TLS resume).
(default=50")

Use specified configuration file.
Produce verbose output.
Use multiple times to increase amount of
information.
Don’t produce any diagnostic output.
(default=off)

The purpose of ‘shisa’ is to manipulate information stored in the Kerberos 5 database used

by Shishi.

Mandatory arguments to long options are mandatory for short options too.

Usage: shisa [OPTIONS]...
-h, --help
-V, —--version
Operations:
-a, ——add
-d, ——dump
-n, --key-add

[REALM [PRINCIPAL]]...

Print help and exit
Print version and exit

Add realm or principal to database.
Dump entries in database.
Add new key to a principal in database.

Chapter 4: Reference Manual

--key-remove

-1, --1list

-m, --modify

-r, —--remove

Parameters:

-f, ——force
——-enabled
—-disabled
--keys

Values:

-E, --encryption-type=STRING

--key-version=NUMBER
--password [=STRING]
—--random
--salt=STRING

--string-to-key-parameter=HEX

Other options:
-c, ——configuration-file=FILE
-0, ——library-options=STRING
-v, —--verbose

-q, —-quiet

50

Remove a key from a principal in
database.

List entries in database.

Modify principal entry in database.

Remove realm or principal from database.

Allow removal of non-empty realms.
(default=off)

Only dump or list enabled principals.
(default=off)

Only dump or list disabled principals.
(default=off)

Print cryptographic key and password in

hostkey format. (default=off)

Override default key encryption type.
Valid values include ’aes128’,

’aes256’, ’aes’ (same as ’aes256’),
’3des’, ’des—md5’, ’des-md4’,
’des-crc’, ’des’ (same as ’des-md5’),

and ’arcfour’.

Version of key.

Derive key from this password.

Use a random key. (default)

Use specified salt for deriving key.
Defaults to concatenation of realm and
(unwrapped) principal name.

Encryption algorithm specific parameter
for password derivation. Currently
only the AES algorithm can utilize
this, where it is interpreted as the
iteration count of the PKCS#5 PBKDF2
key deriver.

Use specified configuration file.
Parse string as configuration file
statement.
Produce verbose output.
(default=off)
Don’t produce any diagnostic output.
(default=off)

Chapter 4: Reference Manual 51

4.9 Environment variables

A few of the compile-time defaults may be overridden at run-time by using environment
variables. The following variables are supported.

e SHISHI_CONFIG Specify the location of the default system configuration file. Used by
the Shishi library. If not specified, the default is specified at compile-time and is usually
‘$prefix/etc/shishi.conf’.

e SHISHI_HOME Specify the user specific directory for configuration files, ticket cache, etc.
Used by the Shishi library. If not specified, it is computed as $HOME/ .shishi.

e SHISHI_USER Specify the default principal user name. Used by the Shishi library. If
not specified, it is taken from the environment variable USER.

e SHISHI_TICKETS Specify the file name of the ticket cache. Used by the Shishi li-
brary. If not specified, it will be $SHISHI_HOME/tickets, or $HOME/.shishi/tickets
if $SHISHI_HOME is not specified.

4.10 Date input formats

First, a quote:
Our units of temporal measurement, from seconds on up to months, are so
complicated, asymmetrical and disjunctive so as to make coherent mental reck-
oning in time all but impossible. Indeed, had some tyrannical god contrived
to enslave our minds to time, to make it all but impossible for us to escape
subjection to sodden routines and unpleasant surprises, he could hardly have
done better than handing down our present system. It is like a set of trape-
zoidal building blocks, with no vertical or horizontal surfaces, like a language in
which the simplest thought demands ornate constructions, useless particles and
lengthy circumlocutions. Unlike the more successful patterns of language and
science, which enable us to face experience boldly or at least level-headedly, our
system of temporal calculation silently and persistently encourages our terror
of time.

... It is as though architects had to measure length in feet, width in meters
and height in ells; as though basic instruction manuals demanded a knowledge
of five different languages. It is no wonder then that we often look into our own
immediate past or future, last Tuesday or a week from Sunday, with feelings of
helpless confusion. . ..

— Robert Grudin, Time and the Art of Living.
This section describes the textual date representations that GNU programs accept. These

are the strings you, as a user, can supply as arguments to the various programs. The C
interface (via the get_date function) is not described here.

4.10.1 General date syntax

A date is a string, possibly empty, containing many items separated by whitespace. The
whitespace may be omitted when no ambiguity arises. The empty string means the begin-
ning of today (i.e., midnight). Order of the items is immaterial. A date string may contain
many flavors of items:

e calendar date items

Chapter 4: Reference Manual 52

e time of day items

e time zone items

e day of the week items
e relative items

e pure numbers.

We describe each of these item types in turn, below.

A few ordinal numbers may be written out in words in some contexts. This is most
useful for specifying day of the week items or relative items (see below). Among the most
commonly used ordinal numbers, the word ‘last’ stands for —1, ‘this’ stands for 0, and
‘first’ and ‘next’ both stand for 1. Because the word ‘second’ stands for the unit of time
there is no way to write the ordinal number 2, but for convenience ‘third’ stands for 3,
‘fourth’ for 4, ‘fifth’ for 5, ‘sixth’ for 6, ‘seventh’ for 7, ‘eighth’ for 8, ‘ninth’ for 9,
‘tenth’ for 10, ‘eleventh’ for 11 and ‘twelfth’ for 12.

When a month is written this way, it is still considered to be written numerically, instead
of being “spelled in full”; this changes the allowed strings.

In the current implementation, only English is supported for words and abbreviations
like ‘AM’; ‘DST’, ‘EST’, ‘first’, ‘January’, ‘Sunday’, ‘tomorrow’, and ‘year’.

The output of the date command is not always acceptable as a date string, not only
because of the language problem, but also because there is no standard meaning for time
zone items like ‘IST’. When using date to generate a date string intended to be parsed
later, specify a date format that is independent of language and that does not use time zone
items other than ‘UTC’ and ‘Z’. Here are some ways to do this:

$ LC_ALL=C TZ=UTCO date

Mon Mar 1 00:21:42 UTC 2004

$ TZ=UTCO date +’%Y-%m-%d %H:%M:%SZ’

2004-03-01 00:21:427

$ date --is0-8601=ns | tr T > > # --1s0-8601 is a GNU extension.
2004-02-29 16:21:42,692722128-0800

$ date --rfc-2822 # a GNU extension

Sun, 29 Feb 2004 16:21:42 -0800

$ date +’%Y-Ym-%d %H:%M:%S %z’ # %z is a GNU extension.
2004-02-29 16:21:42 -0800

$ date +°@Ys.%N’ # %s and %N are GNU extensions.
©1078100502.692722128

Alphabetic case is completely ignored in dates. Comments may be introduced between
round parentheses, as long as included parentheses are properly nested. Hyphens not fol-
lowed by a digit are currently ignored. Leading zeros on numbers are ignored.

Invalid dates like ‘2005-02-29’ or times like ‘24:00’ are rejected. In the typical case
of a host that does not support leap seconds, a time like ‘23:59:60 is rejected even if it
corresponds to a valid leap second.

4.10.2 Calendar date items

A calendar date item specifies a day of the year. It is specified differently, depending on
whether the month is specified numerically or literally. All these strings specify the same
calendar date:

Chapter 4: Reference Manual 53

1972-09-24 # ISO 8601.
72-9-24 # Assume 19xx for 69 through 99,
20xx for 00 through 68.
72-09-24 # Leading zeros are ignored.
9/24/72 # Common U.S. writing.
24 September 1972
24 Sept 72 # September has a special abbreviation.
24 Sep 72 # Three-letter abbreviations always allowed.
Sep 24, 1972
24-sep-T72
24sep72

The year can also be omitted. In this case, the last specified year is used, or the current
year if none. For example:

9/24
sep 24

Here are the rules.

For numeric months, the 150 8601 format ‘year-month-day’ is allowed, where year is
any positive number, month is a number between 01 and 12, and day is a number between
01 and 31. A leading zero must be present if a number is less than ten. If year is 68 or
smaller, then 2000 is added to it; otherwise, if year is less than 100, then 1900 is added
to it. The construct ‘month/day/year’, popular in the United States, is accepted. Also
‘month/day’, omitting the year.

Literal months may be spelled out in full: ‘January’, ‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’, ‘October’, ‘November’ or ‘December’. Literal months
may be abbreviated to their first three letters, possibly followed by an abbreviating dot. It
is also permitted to write ‘Sept’ instead of ‘September’.

When months are written literally, the calendar date may be given as any of the following:

day month year
day month

month day year
day-month-year

Or, omitting the year:
month day

4.10.3 Time of day items

A time of day item in date strings specifies the time on a given day. Here are some examples,
all of which represent the same time:

20:02:00.000000
20:02
8:02pm
20:02-0500 # In EST (U.S. Eastern Standard Time).
More generally, the time of day may be given as ‘hour :minute : second’, where hour is
a number between 0 and 23, minute is a number between 0 and 59, and second is a number
between 0 and 59 possibly followed by ‘.’ or ‘,’ and a fraction containing one or more digits.

Chapter 4: Reference Manual 54

Alternatively, ‘:second’ can be omitted, in which case it is taken to be zero. On the rare
hosts that support leap seconds, second may be 60.

If the time is followed by ‘am’ or ‘pm’ (or ‘a.m.’ or ‘p.m.’), hour is restricted to run from
1 to 12, and ‘:minute’ may be omitted (taken to be zero). ‘am’ indicates the first half of
the day, ‘pm’ indicates the second half of the day. In this notation, 12 is the predecessor
of 1: midnight is ‘12am’ while noon is ‘12pm’. (This is the zero-oriented interpretation of
‘12am’ and ‘12pm’, as opposed to the old tradition derived from Latin which uses ‘12m’ for
noon and ‘12pm’ for midnight.)

The time may alternatively be followed by a time zone correction, expressed as ‘shhmm’,
where s is ‘+’ or ‘=’, hh is a number of zone hours and mm is a number of zone minutes. The
zone minutes term, mm, may be omitted, in which case the one- or two-digit correction is
interpreted as a number of hours. You can also separate hh from mm with a colon. When
a time zone correction is given this way, it forces interpretation of the time relative to
Coordinated Universal Time (UTC), overriding any previous specification for the time zone
or the local time zone. For example, ‘+0530” and ‘+05:30’ both stand for the time zone 5.5
hours ahead of UTC (e.g., India). This is the best way to specify a time zone correction by
fractional parts of an hour. The maximum zone correction is 24 hours.

Either ‘am’/‘pm’ or a time zone correction may be specified, but not both.

4.10.4 Time zone items

A time zone item specifies an international time zone, indicated by a small set of letters,
e.g., ‘UTC’ or ‘Z’ for Coordinated Universal Time. Any included periods are ignored. By
following a non-daylight-saving time zone by the string ‘DST’ in a separate word (that
is, separated by some white space), the corresponding daylight saving time zone may be
specified. Alternatively, a non-daylight-saving time zone can be followed by a time zone
correction, to add the two values. This is normally done only for ‘UTC’; for example,
‘UTC+05:30’ is equivalent to ‘+05:30°.

Time zone items other than ‘UTC’ and ‘Z’ are obsolescent and are not recommended,
because they are ambiguous; for example, ‘EST’ has a different meaning in Australia than
in the United States. Instead, it’s better to use unambiguous numeric time zone corrections
like ‘-=0500’, as described in the previous section.

If neither a time zone item nor a time zone correction is supplied, time stamps are
interpreted using the rules of the default time zone (see Section 4.10.9 [Specifying time zone
rules], page 56).

4.10.5 Day of week items

The explicit mention of a day of the week will forward the date (only if necessary) to reach
that day of the week in the future.

Days of the week may be spelled out in full: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’,
‘Thursday’, ‘Friday’ or ‘Saturday’. Days may be abbreviated to their first three letters,
optionally followed by a period. The special abbreviations ‘Tues’ for ‘Tuesday’, ‘Wednes’
for ‘Wednesday’ and ‘Thur’ or ‘Thurs’ for ‘Thursday’ are also allowed.

A number may precede a day of the week item to move forward supplementary weeks.
It is best used in expression like ‘third monday’. In this context, ‘last day’ or ‘next day’

Chapter 4: Reference Manual 55

is also acceptable; they move one week before or after the day that day by itself would
represent.

A comma following a day of the week item is ignored.

4.10.6 Relative items in date strings

Relative items adjust a date (or the current date if none) forward or backward. The effects
of relative items accumulate. Here are some examples:

1 year

1 year ago
3 years

2 days

The unit of time displacement may be selected by the string ‘year’ or ‘month’ for moving
by whole years or months. These are fuzzy units, as years and months are not all of equal
duration. More precise units are ‘fortnight’ which is worth 14 days, ‘week’ worth 7 days,
‘day’ worth 24 hours, ‘hour’ worth 60 minutes, ‘minute’ or ‘min’ worth 60 seconds, and
‘second’ or ‘sec’ worth one second. An ‘s’ suffix on these units is accepted and ignored.

The unit of time may be preceded by a multiplier, given as an optionally signed number.
Unsigned numbers are taken as positively signed. No number at all implies 1 for a multiplier.
Following a relative item by the string ‘ago’ is equivalent to preceding the unit by a multiplier
with value —1.

The string ‘tomorrow’ is worth one day in the future (equivalent to ‘day’), the string
‘yesterday’ is worth one day in the past (equivalent to ‘day ago’).

The strings ‘now’ or ‘today’ are relative items corresponding to zero-valued time dis-
placement, these strings come from the fact a zero-valued time displacement represents the
current time when not otherwise changed by previous items. They may be used to stress
other items, like in ‘12:00 today’. The string ‘this’ also has the meaning of a zero-valued
time displacement, but is preferred in date strings like ‘this thursday’.

When a relative item causes the resulting date to cross a boundary where the clocks
were adjusted, typically for daylight saving time, the resulting date and time are adjusted
accordingly.

The fuzz in units can cause problems with relative items. For example, ‘2003-07-31 -1
month’ might evaluate to 2003-07-01, because 2003-06-31 is an invalid date. To determine
the previous month more reliably, you can ask for the month before the 15th of the current
month. For example:

$ date -R

Thu, 31 Jul 2003 13:02:39 -0700

$ date --date=’-1 month’ +’Last month was %B?’

Last month was July?

$ date —--date="$(date +/Y-%m-15) -1 month" +’Last month was %B!’
Last month was June!

Also, take care when manipulating dates around clock changes such as daylight saving
leaps. In a few cases these have added or subtracted as much as 24 hours from the clock,
so it is often wise to adopt universal time by setting the TZ environment variable to ‘UTCO’
before embarking on calendrical calculations.

Chapter 4: Reference Manual 56

4.10.7 Pure numbers in date strings

The precise interpretation of a pure decimal number depends on the context in the date
string.

If the decimal number is of the form yyyymmdd and no other calendar date item (see
Section 4.10.2 [Calendar date items]|, page 52) appears before it in the date string, then
yyyy is read as the year, mm as the month number and dd as the day of the month, for
the specified calendar date.

If the decimal number is of the form hhmm and no other time of day item appears before
it in the date string, then hh is read as the hour of the day and mm as the minute of the
hour, for the specified time of day. mm can also be omitted.

If both a calendar date and a time of day appear to the left of a number in the date
string, but no relative item, then the number overrides the year.

4.10.8 Seconds since the Epoch

If you precede a number with ‘@’, it represents an internal time stamp as a count of seconds.
The number can contain an internal decimal point (either ‘.” or ‘,”); any excess precision not
supported by the internal representation is truncated toward minus infinity. Such a number

cannot be combined with any other date item, as it specifies a complete time stamp.

Internally, computer times are represented as a count of seconds since an epoch—a well-
defined point of time. On GNU and POSIX systems, the epoch is 1970-01-01 00:00:00 uTc,
so ‘@0’ represents this time, ‘@1’ represents 1970-01-01 00:00:01 uTcC, and so forth. GNU and
most other POSIX-compliant systems support such times as an extension to POSIX, using
negative counts, so that ‘@-1’ represents 1969-12-31 23:59:59 uTC.

Traditional Unix systems count seconds with 32-bit two’s-complement integers and can
represent times from 1901-12-13 20:45:52 through 2038-01-19 03:14:07 uTC. More modern
systems use 64-bit counts of seconds with nanosecond subcounts, and can represent all the
times in the known lifetime of the universe to a resolution of 1 nanosecond.

On most hosts, these counts ignore the presence of leap seconds. For example, on most
hosts ‘@915148799’ represents 1998-12-31 23:59:59 uTC, ‘@915148800’ represents 1999-01-
01 00:00:00 uTc, and there is no way to represent the intervening leap second 1998-12-31
23:59:60 UTcC.

4.10.9 Specifying time zone rules

Normally, dates are interpreted using the rules of the current time zone, which in turn are
specified by the TZ environment variable, or by a system default if TZ is not set. To specify
a different set of default time zone rules that apply just to one date, start the date with a
string of the form ‘TZ="rule"’. The two quote characters (‘") must be present in the date,
and any quotes or backslashes within rule must be escaped by a backslash.

For example, with the GNU date command you can answer the question “What time is
it in New York when a Paris clock shows 6:30am on October 31, 20047” by using a date
beginning with ‘TZ="Europe/Paris"’ as shown in the following shell transcript:

$ export TZ="America/New_York"
$ date --date=’TZ="Europe/Paris" 2004-10-31 06:30°
Sun Oct 31 01:30:00 EDT 2004

Chapter 4: Reference Manual 57

In this example, the ‘--date’ operand begins with its own TZ setting, so the rest of that
operand is processed according to ‘Europe/Paris’ rules, treating the string ‘2004-10-31
06:30’ as if it were in Paris. However, since the output of the date command is processed
according to the overall time zone rules, it uses New York time. (Paris was normally six
hours ahead of New York in 2004, but this example refers to a brief Halloween period when
the gap was five hours.)

A TZ value is a rule that typically names a location in the ‘tz’ database. A recent catalog
of location names appears in the TWiki Date and Time Gateway. A few non-GNU hosts
require a colon before a location name in a TZ setting, e.g., ‘TZ=":America/New_York"’.

The ‘tz’ database includes a wide wvariety of locations ranging from
‘Arctic/Longyearbyen’ to ‘Antarctica/South_Pole’, but if you are at sea and
have your own private time zone, or if you are using a non-GNU host that does not support
the ‘tz’ database, you may need to use a POSIX rule instead. Simple POSIX rules like
‘UTCO’ specify a time zone without daylight saving time; other rules can specify simple
daylight saving regimes. See Section “Specifying the Time Zone with TZ” in The GNU C
Library.

4.10.10 Authors of get_date

get_date was originally implemented by Steven M. Bellovin (smb@research.att.com)
while at the University of North Carolina at Chapel Hill. The code was later tweaked
by a couple of people on Usenet, then completely overhauled by Rich $alz (rsalz@bbn.com)
and Jim Berets (jberets@bbn.com) in August, 1990. Various revisions for the GNU system
were made by David MacKenzie, Jim Meyering, Paul Eggert and others.

This chapter was originally produced by Francois Pinard (pinard@iro.umontreal.ca)
from the ‘getdate.y’ source code, and then edited by K. Berry (kb@cs.umb.edu).

http://www.twinsun.com/tz/tz-link.htm
http://twiki.org/cgi-bin/xtra/tzdate
mailto:smb@research.att.com
mailto:rsalz@bbn.com
mailto:jberets@bbn.com
mailto:pinard@iro.umontreal.ca
mailto:kb@cs.umb.edu

Chapter 5: Programming Manual 58

5 Programming Manual
This chapter describes all the publicly available functions in the library.

5.1 Preparation

To use ‘Libshishi’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libshishi’ may be
to look at the examples at the end of this manual (see Section 5.18 [Examples|, page 224).

5.1.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘shishi.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <shishi.h>

The name space of ‘Libshishi’ is shishi_x for function names, Shishi* for data types
and SHISHI_* for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

5.1.2 Initialization

‘Libshishi” must be initialized before it can be used. The library is initialized by calling
shishi_init (see Section 5.2 [Initialization Functions|, page 61). The resources allocated
by the initialization process can be released if the application no longer has a need to call
‘Libshishi’ functions, this is done by calling shishi_done.

In order to take advantage of the internationalisation features in ‘Libshishi’, such as

translated error messages, the application must set the current locale using setlocale
before initializing ‘Libshishi’.

5.1.3 Version Check

It is often desirable to check that the version of ‘Libshishi’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

shishi_check_version

const char * shishi_check_version (const char * req_version) [Function]
req-version: version string to compare with, or NULL

Check that the version of the library is at minimum the one given as a string in
req_version.

Return value: the actual version string of the library; NULL if the condition is not
met. If NULL is passed to this function no check is done and only the version string is
returned.

Chapter 5: Programming Manual 59

The normal way to use the function is to put something similar to the following early in
your main:

if (!shishi_check_version (SHISHI_VERSION))
{
printf ("shishi_check_version failed:\n"
"Header file incompatible with shared library.\n");
exit (EXIT_FAILURE);
}

5.1.4 Building the source

If you want to compile a source file including the ‘shishi.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libshishi’” uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
shishi. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config shishi --cflags®
Adding the output of ‘pkg-config shishi --cflags’ to the compilers command line
will ensure that the compiler can find the ‘Libshishi’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--1ibs’ to pkg-config
shishi can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘Libshishi’ libararies (in particular, the ‘~1shishi’
option). The example shows how to link ‘foo.o’ with the ‘Libshishi’ library to a program
foo.

gcc —o foo foo.o ‘pkg-config shishi --1ibs‘
Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc -o foo foo.c ‘pkg-config shishi --cflags --libs®

5.1.5 Autoconf tests

If you work on a project that uses Autoconf (see (undefined) [top], page (undefined)) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate Shishi into your Autoconf based package. The
preferred approach, is to use Libtool in your project, and use the normal Autoconf header
file and library tests.

5.1.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Shishi. The following illustrate this scenario.

Chapter 5: Programming Manual 60

AC_ARG_ENABLE (kerberos_v5,
AC_HELP_STRING([--disable-kerberos_v5],

[don’t use the KERBEROS_V5 mechanism]),
kerberos_vb=$enableval)
if test "$kerberos_v5" != "no" ; then
PKG_CHECK_MODULES (SHISHI, shishi >= 0.0.0,
[kerberos_vb=yes],

[kerberos_v5=no])
if test "$kerberos_vb" != "yes" ; then
kerberos_vb5=no
AC_MSG_WARN([shishi not found, disabling Kerberos 5])
else
kerberos_vb=yes
AC_DEFINE(USE_KERBEROS_V5, 1,

[Define to 1 if you want Kerberos 5.])

fi
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT ($kerberos_vb)

5.1.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see (undefined) [top], page (undefined)), you can use the normal
Autoconf tests to find the Shishi library and rely on the Libtool dependency tracking to
include the proper dependency libraries (e.g., Libidn). The following illustrate this scenario.

AC_CHECK_HEADER (shishi.h,
AC_CHECK_LIB(shishi, shishi_check_version,
[kerberosb=yes AC_SUBST(SHISHI_LIBS, -1lshishi)],
kerberos5=no),
kerberos5=no)
AC_ARG_ENABLE (kerberosb,
AC_HELP_STRING([--disable-kerberos5],
[disable Kerberos 5 unconditionallyl),

kerberos5=$enableval)
if test "$kerberos5" != "no" ; then
AC_DEFINE(USE_KERBEROS_V5, 1,

[Define to 1 if you want Kerberos 5.])
else
AC_MSG_WARN([Shishi not found, disabling Kerberos 5])
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT ($kerberosb)

5.1.5.3 Standalone Autoconf test

If your package does not use Libtool, as well as detecting the Shishi library as in the
previous case, you must also detect whatever dependencies Shishi requires to work (e.g.,

Chapter 5: Programming Manual 61

libidn). Since the dependencies are in a state of flux, we do not provide an example and we
do not recommend this approach, unless you are experienced developer.

5.2 Initialization Functions

shishi

Shishi * shishi (void) [Function]
Initializes the Shishi library, and set up, using shishi_error_set_outputtype(),
the library so that future warnings and informational messages are printed to stderr.
If this function fails, it may print diagnostic errors to stderr.

Return value: Returns Shishi library handle, or NULL on error.
shishi_server

Shishi * shishi_server (void) [Function]
Initializes the Shishi library, and set up, using shishi_error_set_outputtype(),
the library so that future warnings and informational messages are printed to the
syslog. If this function fails, it may print diagnostic errors to the syslog.

Return value: Returns Shishi library handle, or NULL on error.
shishi_done

void shishi_done (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init().

Deallocates the shishi library handle. The handle must not be used in any calls to
shishi functions after this.

If there is a default tkts, it is written to the default tkts file (call shishi_tkts_
default_file_set () to change the default tkts file). If you do not wish to write the
default tkts file, close the default tkts with shishi_tkts_done(handle, NULL) before
calling this function.

shishi_init

int shishi_init (Shishi ** handle) [Function]
handle: pointer to handle to be created.

Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file and user tickets from their default locations. The
paths to the system configuration file is decided at compile time, and is
$sysconfdir /shishi.conf. The user configuration file is $HOME/.shishi/config, and
the user ticket file is SHOME/ .shishi/ticket.

The handle is allocated regardless of return values, except for SHISHI_ HANDLE_ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 62

shishi_init_with_paths

int shishi_init_with_paths (Shishi ** handle, const char * [Function]
tktsfile, const char * systemcfgfile, const char * usercfgfile)
handle: pointer to handle to be created.

tktsfile: Filename of ticket file, or NULL.
systemcfgfile: Filename of system configuration, or NULL.
usercfgfile: Filename of user configuration, or NULL.

Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file, and user tickets from the specified locations. If any
of usercfgfile or systemcfgfile is NULL, the file is read from its default lo-
cation, which for the system configuration file is decided at compile time, and is
$sysconfdir /shishi.conf, and for the user configuration file is $HOME/.shishi/config.
If the ticket file is NULL, a ticket file is not read at all.

The handle is allocated regardless of return values, except for SHISHI_ HANDLE_ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Return value: Returns SHISHI_OK iff successful.
shishi_init_server

int shishi_init_server (Shishi ** handle) [Function]
handle: pointer to handle to be created.

Create a Shishi library handle, using shishi_server (), and read the system config-
uration file. The paths to the system configuration file is decided at compile time,
and is $sysconfdir/shishi.conf.

The handle is allocated regardless of return values, except for SHISHI_ HANDLE_ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the file.)

Return value: Returns SHISHI_OK iff successful.
shishi_init_server_with_paths

int shishi_init_server_with_paths (Shishi ** handle, const char [Function]
* systemcfgfile)
handle: pointer to handle to be created.
systemcfgfile: Filename of system configuration, or NULL.

Create a Shishi library handle, using shishi_server(), and read the system con-
figuration file from specified location. The paths to the system configuration file is
decided at compile time, and is $sysconfdir/shishi.conf. The handle is allocated re-
gardless of return values, except for SHISHI. HANDLE_ERROR which indicates a
problem allocating the handle. (The other error conditions comes from reading the

file.)
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 63

shishi_cfg

int shishi_cfg (Shishi * handle, const char * option) [Function]
handle: Shishi library handle create by shishi_init().

option: string with shishi library option.
Configure shishi library with given option.

Return Value: Returns SHISHI_OK if option was valid.
shishi_cfg_from_file

int shishi_cfg_from_file (Shishi * handle, const char * cfg) [Function]
handle: Shishi library handle create by shishi_init().

cfg: filename to read configuration from.
Configure shishi library using configuration file.

Return Value: Returns SHISHI_OK iff successful.

shishi_cfg_print

int shishi_cfg_print (Shishi * handle, FILE * fh) [Function]
handle: Shishi library handle create by shishi_init ().
fth: file descriptor opened for writing.

Print library configuration status, mostly for debugging purposes.

Return Value: Returns SHISHI_OK.
shishi_cfg_default_systemfile

const char * shishi_cfg_default_systemfile (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

The system configuration file name is decided at compile-time, but may be overridden
by the environment variable SHISHI_CONFIG.

Return value: Return system configuration file name.
shishi_cfg_default_userdirectory

const char * shishi_cfg_default_userdirectory (Shishi * [Function]
handle)
handle: Shishi library handle create by shishi_init ().

The default user directory (used for, e.g. Shishi ticket cache) is normally computed
by appending BASE_DIR ("/.shishi") to the content of the environment variable
$HOME, but can be overridden by specifying the complete path in the environment
variable SHISHI_HOME.

Return value: Return directory with configuration files etc.

Chapter 5: Programming Manual 64

shishi_cfg_userdirectory_file

char * shishi_cfg_userdirectory_file (Shishi * handle, const [Function]
char * file)
handle: Shishi library handle create by shishi_init().

file: basename of file to find in user directory.
Get the full path to specified file in the users’ configuration directory.

Return value: Return full path to given relative filename, relative to the user
specific Shishi configuration directory as returned by shishi_cfg_default_
userdirectory() (typically SHOME/.shishi).

shishi_cfg_default_userfile

const char * shishi_cfg_default_userfile (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

Get filename of default user configuration file, typically $HOME /shishi.conf.

Return value: Return user configuration filename.
shishi_cfg_clientkdcetype

int shishi_cfg_clientkdcetype (Shishi * handle, int32_t ** [Function]

etypes)
handle: Shishi library handle create by shishi_init().

etypes: output array with encryption types.
Set the etypes variable to the array of preferred client etypes.

Return value: Return the number of encryption types in the array, 0 means none.
shishi_cfg_clientkdcetype_fast

int32_t shishi_cfg_clientkdcetype_fast (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init ().

Extract the default etype from the list of preferred client etypes.

Return value: Return the default encryption types.
shishi_cfg_clientkdcetype_set

int shishi_cfg_clientkdcetype_set (Shishi * handle, char * [Function]
value)
handle: Shishi library handle create by shishi_init ().

value: string with encryption types.

Set the "client-kdc-etypes" configuration option from given string. The string con-
tains encryption types (integer or names) separated by comma or whitespace, e.g.
"aes256-cts-hmac-shal-96 des3-cbc-shal-kd des-cbc-md5".

Return value: Return SHISHI_OK iff successful.

Chapter 5: Programming Manual 65

shishi_cfg_authorizationtype_set

int shishi_cfg_authorizationtype_set (Shishi * handle, char * [Function]
value)

handle: Shishi library handle create by shishi_init().
value: string with authorization types.
Set the "authorization-types" configuration option from given string. The string
contains authorization types (integer or names) separated by comma or whitespace,
e.g. "basic kblogin".
Return value: Return SHISHI_OK iff successful.

5.3 Ticket Set Functions

A “ticket set” is, as the name implies, a collection of tickets. Functions are provided to read
tickets from file into a ticket set, to query number of tickets in the set, to extract a given
ticket from the set, to search the ticket set for tickets matching certain criterium, to write
the ticket set to a file, etc. High level functions for performing a initial authentication (see
Section 5.7 [AS Functions], page 114) or subsequent authentication (see Section 5.8 [TGS
Functions], page 119) and storing the new ticket in the ticket set are also provided.

To manipulate each individual ticket, See Section 5.6 [Ticket Functions|, page 103. For
low-level ASN.1 manipulation see See Section 5.9 [Ticket (ASN.1) Functions|, page 125.

shishi_tkts_default_file_guess

char * shishi_tkts_default_file_guess (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

Guesses the default ticket filename; it is $SSHISHI_TICKETS, $SHISHI_HOME/tickets,
or SHOME/ .shishi/tickets.

Return value: Returns default tkts filename as a string that has to be deallocated
with free() by the caller.

shishi_tkts_default_file

const char * shishi_tkts_default_file (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

Get filename of default ticket set.

Return value: Returns the default ticket set filename used in the library. The string
is not a copy, so don’t modify or deallocate it.

shishi_tkts_default_file_set

void shishi_tkts_default_file_set (Shishi * handle, const char * [Function]
tktsfile)
handle: Shishi library handle create by shishi_init().
tktsfile: string with new default tkts file name, or NULL to reset to default.
Set the default ticket set filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

Chapter 5: Programming Manual 66

shishi_tkts_default

Shishi_tkts * shishi_tkts_default (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

Get the default ticket set for library handle.
Return value: Return the handle global ticket set.

shishi_tkts

int shishi_tkts (Shishi * handle, Shishi_tkts ** tkts) [Function]
handle: shishi handle as allocated by shishi_init().

tkts: output pointer to newly allocated tkts handle.
Get a new ticket set handle.
Return value: Returns SHISHI_OK iff successful.

shishi_tkts_done

void shishi_tkts_done (Shishi_tkts ** tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Deallocates all resources associated with ticket set. The ticket set handle must not
be used in calls to other shishi_tkts_*() functions after this.

shishi_tkts_size

int shishi_tkts_size (Shishi_tkts * tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Get size of ticket set.
Return value: Returns number of tickets stored in ticket set.

shishi_tkts_nth

Shishi_tkt * shishi_tkts_nth (Shishi_tkts * tkts, int ticketno) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: integer indicating requested ticket in ticket set.
Get the n: th ticket in ticket set.

Return value: Returns a ticket handle to the ticketno:th ticket in the ticket set, or
NULL if ticket set is invalid or ticketno is out of bounds. The first ticket is ticketno
0, the second ticketno 1, and so on.

shishi_tkts_remove

int shishi_tkts_remove (Shishi_tkts * tkts, int ticketno) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: ticket number of ticket in the set to remove. The first ticket is ticket number
0.

Remove a ticket, indexed by ticketno, in ticket set.
Return value: SHISHI_OK if successful or if ticketno larger than size of ticket set.

Chapter 5: Programming Manual 67

shishi_tkts_add

int shishi_tkts_add (Shishi-tkts * tkts, Shishi_tkt * tkt) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

tkt: ticket to be added to ticket set.

Add a ticket to the ticket set. Only the pointer is stored, so if you modify tkt, the
ticket in the ticket set will also be modified.

Return value: Returns SHISHI_OK iff successful.
shishi_tkts_new

int shishi_tkts_new (Shishi_tkts * tkts, Shishi_asnl ticket, [Function]
Shishi_asnl enckdcreppart, Shishi_asnl kdcrep)
tkts: ticket set handle as allocated by shishi_tkts().

ticket: input ticket variable.

enckdcreppart: input ticket detail variable.
kdcrep: input KDC-REP variable.

Allocate a new ticket and add it to the ticket set.

Note that ticket, enckdcreppart and kdcrep are stored by reference, so you must
not de-allocate them before the ticket is removed from the ticket set and de-allocated.

Return value: Returns SHISHI_OK iff successful.
shishi_tkts_read

int shishi_tkts_read (Shishi_tkts * tkts, FILE * fh) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to read from.
Read tickets from file descriptor and add them to the ticket set.
Return value: Returns SHISHI_OK iff successful.

shishi_tkts_from_file

int shishi_tkts_from_file (Shishi_tkts * tkts, const char * [Function]
filename)
tkts: ticket set handle as allocated by shishi_tkts().

filename: filename to read tickets from.
Read tickets from file and add them to the ticket set.
Return value: Returns SHISHI_OK iff successful.

shishi_tkts_write

int shishi_tkts_write (Shishi_tkts * tkts, FILE * fh) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to write tickets to.
Write tickets in set to file descriptor.
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 68

shishi_tkts_expire

int shishi_tkts_expire (Shishi_tkts * tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Remove expired tickets from ticket set.

Return value: Returns SHISHI_OK iff successful.
shishi_tkts_to_file

int shishi_tkts_to_file (Shishi-tkts * tkts, const char * [Function]
filename)
tkts: ticket set handle as allocated by shishi_tkts().

filename: filename to write tickets to.
Write tickets in set to file.
Return value: Returns SHISHI_OK iff successful.

shishi_tkts_print_for_service

int shishi_tkts_print_for_service (Shishi_tkts * tkts, FILE * [Function]
fh, const char * service)
tkts: ticket set handle as allocated by shishi_tkts().

th: file descriptor to print to.
service: service to limit tickets printed to, or NULL.

Print description of tickets for specified service to file descriptor. If service is NULL,
all tickets are printed.

Return value: Returns SHISHI_OK iff successful.
shishi_tkts_print

int shishi_tkts_print (Shishi_tkts * tkts, FILE * fh) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

th: file descriptor to print to.
Print description of all tickets to file descriptor.

Return value: Returns SHISHI_OK iff successful.

shishi_tkt_match_p

int shishi_tkt_match_p (Shishi-tkt * tkt, Shishi_tkts_hint * hint) [Function]
tkt: ticket to test hints on.

hint: structure with characteristics of ticket to be found.
Test if a ticket matches specified hints.

Return value: Returns 0 iff ticket fails to match given criteria.

Chapter 5: Programming Manual 69

shishi_tkts_find

Shishi_tkt * shishi_tkts_find (Shishi_tkts * tkts, Shishi_tkts_hint [Function]
*hint)
tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to be found.

Search the ticketset sequentially (from ticket number 0 through all tickets in the
set) for a ticket that fits the given characteristics. If a ticket is found, the hint-
>startpos field is updated to point to the next ticket in the set, so this function can
be called repeatedly with the same hint argument in order to find all tickets matching
a certain criterium. Note that if tickets are added to, or removed from, the ticketset
during a query with the same hint argument, the hint->startpos field must be updated
appropriately.

Here is how you would typically use this function: Shishi_tkts_hint hint;

Shishi_tkt tkt;

memset (&hint, 0, sizeof(hint));

hint.server = "imap/mail.example.org";

tkt = shishi_tkts_find (shishi-tkts_default(handle), &hint);

if (Itkt)

printf("No ticket found...\n");

else

do_something_with_ticket (tkt);

Return value: Returns a ticket if found, or NULL if no further matching tickets could
be found.

shishi_tkts_find_for_clientserver

Shishi_tkt * shishi_tkts_find_for_clientserver (Shishi_tkts * [Function]
tkts, const char * client, const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

client: client name to find ticket for.
server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given client and
server. See shishi_tkts_find().

Return value: Returns a ticket if found, or NULL.
shishi_tkts_find_for_server

Shishi_tkt * shishi_tkts_find_for_server (Shishi_tkts * tkts, [Function]
const char * server)
tkts: ticket set handle as allocated by shishi_tkts().
server: server name to find ticket for.
Short-hand function for searching the ticket set for a ticket for the given server us-
ing the default client principal. See shishi_tkts_find_for_clientserver() and
shishi_tkts_find().

Chapter 5: Programming Manual 70

Return value: Returns a ticket if found, or NULL.
shishi_tkts_get_tgt

Shishi_tkt * shishi_tkts_get_tgt (Shishi_tkts * tkts, [Function]
Shishi_tkts_hint * hint)
tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to begot.

Get a ticket granting ticket (TGT) suitable for acquiring ticket matching the hint.
Le., get a TGT for the server realm in the hint structure (hint->serverrealm), or the
default realm if the serverrealm field is NULL. Can result in AS exchange.

Currently this function do not implement cross realm logic.

This function is used by shishi_tkts_get (), which is probably what you really want
to use unless you have special needs.

Return value: Returns a ticket granting ticket if successful, or NULL if this function
is unable to acquire on.

shishi_tkts_get_tgs

Shishi_tkt * shishi_tkts_get_tgs (Shishi_tkts * tkts, [Function]
Shishi_tkts_hint * hint, Shishi_tkt * tgt)
tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to begot.
tgt: ticket granting ticket to use.
Get a ticket via TGS exchange using specified ticket granting ticket.

This function is used by shishi_tkts_get (), which is probably what you really want
to use unless you have special needs.

Return value: Returns a ticket if successful, or NULL if this function is unable to
acquire on.

shishi_tkts_get

Shishi_tkt * shishi_tkts_get (Shishi_tkts * tkts, Shishi_tkts_hint [Function]
*hint)
tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to begot.

Get a ticket matching given characteristics. This function first looks in the ticket
set for the ticket, then tries to find a suitable TGT, possibly via an AS exchange,
using shishi_tkts_get_tgt (), and then use that TGT in a TGS exchange to get
the ticket.

Currently this function do not implement cross realm logic.

Return value: Returns a ticket if found, or NULL if this function is unable to get the
ticket.

Chapter 5: Programming Manual 71

shishi_tkts_get_for_clientserver

Shishi_tkt * shishi_tkts_get_for_clientserver (Shishi_tkts * [Function]
tkts, const char * client, const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

client: client name to get ticket for.
server: server name to get ticket for.

Short-hand function for getting a ticket for the given client and server. See shishi_
tkts_get ().

Return value: Returns a ticket if found, or NULL.
shishi_tkts_get_for_server

Shishi_tkt * shishi_tkts_get_for_server (Shishi_tkts * tkts, [Function]
const char * server)
tkts: ticket set handle as allocated by shishi_tkts().
server: server name to get ticket for.
Short-hand function for getting a ticket for the given server and the default principal
client. See shishi_tkts_get().

Return value: Returns a ticket if found, or NULL.

5.4 AP-REQ and AP-REP Functions

The “AP-REQ” and “AP-REP” are ASN.1 structures used by application client and servers
to prove to each other who they are. The structures contain auxilliary information, together
with an authenticator (see Section 5.11 [Authenticator Functions|, page 153) which is the
real cryptographic proof. The following illustrates the AP-REQ and AP-REP ASN.1 struc-
tures.

AP-REQ ::= [APPLICATION 14] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (14),
ap-options [2] APOptions,
ticket [3] Ticket,

authenticator [4] EncryptedData {Authenticator,
{ keyuse-pa-TGSReq-authenticator
| keyuse-APReq-authenticator }7}

}
AP-REP ::= [APPLICATION 15] SEQUENCE {
pvno (0] INTEGER (5),
msg-type [1] INTEGER (15),
enc-part [2] EncryptedData {EncAPRepPart,
{ keyuse-EncAPRepPart 1}}
}

EncAPRepPart [APPLICATION 27] SEQUENCE {

Chapter 5: Programming Manual 72

ctime [0] KerberosTime,
cusec [1] Microseconds,
subkey [2] EncryptionKey OPTIONAL,
seq-number [3] UInt32 OPTIONAL
}
shishi_ap
int shishi_ap (Shishi * handle, Shishi_ap ** ap) [Function]

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange

Create a new AP exchange with a random subkey of the default encryption type from
configuration. Note that there is no guarantee that the receiver will understand that
key type, you should probably use shishi_ap_etype() or shishi_ap_nosubkey ()
instead. In the future, this function will likely behave as shishi_ap_nosubkey () and
shishi_ap_nosubkey() will be removed.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_etype
int shishi_ap_etype (Shishi * handle, Shishi_ap ** ap, int etype) [Function]
handle: shishi handle as allocated by shishi_init ().
ap: pointer to new structure that holds information about AP exchange
etype: encryption type of newly generated random subkey.

Create a new AP exchange with a random subkey of indicated encryption type.

Return value: Returns SHISHI_OK iff successful.

shishi_ap_nosubkey

int shishi_ap_nosubkey (Shishi * handle, Shishi_ap ** ap) [Function]
handle: shishi handle as allocated by shishi_init ().
ap: pointer to new structure that holds information about AP exchange

Create a new AP exchange without subkey in authenticator.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_done

void shishi_ap_done (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Deallocate resources associated with AP exchange. This should be called by the
application when it no longer need to utilize the AP exchange handle.

Chapter 5: Programming Manual 73

shishi_ap_set_tktoptions

int shishi_ap_set_tktoptions (Shishi_ap * ap, Shishi_tkt * tkt, int [Function]
options)
ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()).

Return value: Returns SHISHI_OK iff successful.
shishi_ap_set_tktoptionsdata

int shishi_ap_set_tktoptionsdata (Shishi_ap * ap, Shishi_tkt * [Function]
tkt, int options, const char * data, size_t len)
ap: structure that holds information about AP exchange

tkt: ticket to set in AP.

options: AP-REQ options to set in AP.

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the Authenticator checksum data.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_set_tktoptionsraw

int shishi_ap_set_tktoptionsraw (Shishi_ap * ap, Shishi_tkt * tkt, [Function]
int options, int32_t cksumtype, const char * data, size_t len)
ap: structure that holds information about AP exchange

tkt: ticket to set in AP.

options: AP-REQ options to set in AP.

cksumtype: authenticator checksum type to set in AP.

data: input array with data to store in checksum field in Authenticator.

len: length of input array with data to store in checksum field in Authenticator.

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the raw Authenticator checksum data.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_set_tktoptionsasnlusage

int shishi_ap_set_tktoptionsasnlusage (Shishi_ap * ap, [Function]
Shishi_tkt * tkt, int options, Shishi_asnl node, const char * field, int
authenticatorcksumkeyusage, int authenticatorkeyusage)
ap: structure that holds information about AP exchange

Chapter 5: Programming Manual 74

tkt: ticket to set in AP.

options: AP-REQ options to set in AP.

node: input ASN.1 structure to store as authenticator checksum data.
field: field in ASN.1 structure to use.

authenticatorcksumkeyusage: key usage for checksum in authenticator.
authenticatorkeyusage: key usage for authenticator.

Set ticket, options and authenticator checksum data using shishi_ap_set_
tktoptionsdata(). The authenticator checksum data is the DER encoding of the
ASN.1 field provided.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_tktoptions

int shishi_ap_tktoptions (Shishi * handle, Shishi_ap ** ap, [Function]
Shishi_tkt * tkt, int options)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.

Create a new AP exchange using shishi_ap(), and set the ticket and AP-REQ
apoptions using shishi_ap_set_tktoptions(). A random session key is added to
the authenticator, using the same keytype as the ticket.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_tktoptionsdata

int shishi_ap_tktoptionsdata (Shishi * handle, Shishi_ap ** ap, [Function]
Shishi_tkt * tkt, int options, const char * data, size_t len)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata(). A
random session key is added to the authenticator, using the same keytype as the
ticket.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 75

shishi_ap_tktoptionsraw

int shishi_ap_tktoptionsraw (Shishi * handle, Shishi_ap ** ap, [Function]
Shishi_tkt * tkt, int options, int32_t cksumtype, const char * data, size_t
len)

handle: shishi handle as allocated by shishi_init ().

ap: pointer to new structure that holds information about AP exchange

tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

cksumtype: authenticator checksum type to set in AP.

data: input array with data to store in checksum field in Authenticator.

len: length of input array with data to store in checksum field in Authenticator.

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ
apoptions and the raw Authenticator checksum data field using shishi_ap_set_
tktoptionsraw(). A random session key is added to the authenticator, using the
same keytype as the ticket.

Return value: Returns SHISHI_OK iff successful.

shishi_ap_etype_tktoptionsdata

int shishi_ap_etype_tktoptionsdata (Shishi * handle, Shishi_ap [Function]
** ap, int32_t etype, Shishi_tkt * tkt, int options, const char * data,
size_t len)

handle: shishi handle as allocated by shishi_init ().

ap: pointer to new structure that holds information about AP exchange
etype: encryption type of newly generated random subkey.

tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata(). A
random session key is added to the authenticator, using the same keytype as the
ticket.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_tktoptionsasnlusage

int shishi_ap_tktoptionsasnlusage (Shishi * handle, Shishi_ap ** [Function]
ap, Shishi_tkt * tkt, int options, Shishi_asnl node, const char * field, int
authenticatorcksumkeyusage, int authenticatorkeyusage)
handle: shishi handle as allocated by shishi_init ().
ap: pointer to new structure that holds information about AP exchange

tkt: ticket to set in newly created AP.

Chapter 5: Programming Manual 76

options: AP-REQ options to set in newly created AP.

node: input ASN.1 structure to store as authenticator checksum data.
field: field in ASN.1 structure to use.

authenticatorcksumkeyusage: key usage for checksum in authenticator.
authenticatorkeyusage: key usage for authenticator.

Create a new AP exchange using shishi_ap(), and set ticket, options and authen-
ticator checksum data from the DER encoding of the ASN.1 field using shishi_ap_
set_tktoptionsasniusage(). A random session key is added to the authenticator,
using the same keytype as the ticket.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_tkt

Shishi_tkt * shishi_ap_tkt (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Get Ticket from AP exchange.

Return value: Returns the ticket from the AP exchange, or NULL if not yet set or
an error occured.

shishi_ap_tkt_set

void shishi_ap_tkt_set (Shishi_ap * ap, Shishi_tkt * tkt) [Function]
ap: structure that holds information about AP exchange

tkt: ticket to store in AP.
Set the Ticket in the AP exchange.

shishi_ap_authenticator_cksumdata

int shishi_ap_authenticator_cksumdata (Shishi_ap * ap, char * [Function]
out, size_-t * len)
ap: structure that holds information about AP exchange
out: output array that holds authenticator checksum data.
len: on input, maximum length of output array that holds authenticator checksum
data, on output actual length of output array that holds authenticator checksum data.
Get checksum data from Authenticator.

Return value: Returns SHISHI_OK if successful, or SHISHI_TOO_SMALL_BUFFER if
buffer provided was too small (then len will hold necessary buffer size).

shishi_ap_authenticator_cksumdata_set

void shishi_ap_authenticator_cksumdata_set (Shishi_ap * ap, [Function]
const char * authenticatorcksumdata, size_t
authenticatorcksumdatalen)
ap: structure that holds information about AP exchange

authenticatorcksumdata: input array with data to compute checksum on and store
in Authenticator in AP-REQ.

Chapter 5: Programming Manual 77

authenticatorcksumdatalen: length of input array with data to compute checksum on
and store in Authenticator in AP-REQ.

Set the Authenticator Checksum Data in the AP exchange. This is the data that will
be checksumed, and the checksum placed in the checksum field. It is not the actual
checksum field. See also shishi_ap_authenticator_cksumraw_set.

shishi_ap_authenticator_cksumraw_set

void shishi_ap_authenticator_cksumraw_set (Shishi_ap * ap, [Function]

int32_t authenticatorcksumtype, const char * authenticatorcksumraw,
size_t authenticatorcksumrawlen)
ap: structure that holds information about AP exchange

authenticatorcksumtype: authenticator checksum type to set in AP.

authenticatorcksumraw: input array with authenticator checksum field value to set
in Authenticator in AP-REQ.

authenticatorcksumrawlen: length of input array with authenticator checksum field
value to set in Authenticator in AP-REQ.

Set the Authenticator Checksum Data in the AP exchange. This is the actual check-
sum field, not data to compute checksum on and then store in the checksum field.
See also shishi_ap_authenticator_cksumdata_set.

shishi_ap_authenticator_cksumtype

int32_t shishi_ap_authenticator_cksumtype (Shishi_ap * ap) [Function]

ap: structure that holds information about AP exchange
Get the Authenticator Checksum Type in the AP exchange.

Return value: Return the authenticator checksum type.

shishi_ap_authenticator_cksumtype_set

void shishi_ap_authenticator_cksumtype_set (Shishi_ap * ap, [Function]

int32_t cksumtype)
ap: structure that holds information about AP exchange

cksumtype: authenticator checksum type to set in AP.

Set the Authenticator Checksum Type in the AP exchange.

shishi_ap_authenticator

Shishi_asnl shishi_ap_authenticator (Shishi_ap * ap) [Function]

ap: structure that holds information about AP exchange
Get ASN.1 Authenticator structure from AP exchange.

Return value: Returns the Authenticator from the AP exchange, or NULL if not yet
set or an error occured.

Chapter 5: Programming Manual 78

shishi_ap_authenticator_set

void shishi_ap_authenticator_set (Shishi_ap * ap, Shishi_asnl [Function]
authenticator)
ap: structure that holds information about AP exchange

authenticator: authenticator to store in AP.

Set the Authenticator in the AP exchange.

shishi_ap_req

Shishi_asnl shishi_ap_req (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Get ASN.1 AP-REQ structure from AP exchange.

Return value: Returns the AP-REQ from the AP exchange, or NULL if not yet set
or an error occured.

shishi_ap_req_set
void shishi_ap_req_set (Shishi_ap * ap, Shishi_asnl apreq) [Function]
ap: structure that holds information about AP exchange

apreq: apreq to store in AP.
Set the AP-REQ in the AP exchange.

shishi_ap_req_der

int shishi_ap_req_der (Shishi_ap * ap, char ** out, size_t * outlen) [Function]
ap: structure that holds information about AP exchange

out: pointer to output array with der encoding of AP-REQ.
outlen: pointer to length of output array with der encoding of AP-REQ.

Build AP-REQ using shishi_ap_req_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_req_der_set

int shishi_ap_req_der_set (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.

DER decode AP-REQ and set it AP exchange. If decoding fails, the AP-REQ in the
AP exchange is lost.

Return value: Returns SHISHI_OK.

Chapter 5: Programming Manual 79

shishi_ap_req_build

int shishi_ap_req_build (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Checksum data in authenticator and add ticket and authenticator to AP-REQ.
Return value: Returns SHISHI_OK iff successful.

shishi_ap_req_decode

int shishi_ap_req_decode (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Decode ticket in AP-REQ and set the Ticket fields in the AP exchange.
Return value: Returns SHISHI_OK iff successful.

shishi_ap_req_process_keyusage

int shishi_ap_req_process_keyusage (Shishi_ap * ap, Shishi_key * [Function]
key, int32_t keyusage)
ap: structure that holds information about AP exchange
key: cryptographic key used to decrypt ticket in AP-REQ.

keyusage: key usage to use during decryption, for normal AP-REQ’s this is normally
SHISHI_KEYUSAGE_APREQ_AUTHENTICATOR, for AP-REQ’s part of TGS-

REQ’s, this is normally SHISHI_ KEYUSAGE_-TGSREQ_-APREQ_AUTHENTICATOR.

Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_req_process

int shishi_ap_req_process (Shishi_ap * ap, Shishi_key * key) [Function]
ap: structure that holds information about AP exchange

key: cryptographic key used to decrypt ticket in AP-REQ.

Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_req_asnl

int shishi_ap_req_asnl (Shishi_ap * ap, Shishi_asnl * apreq) [Function]
ap: structure that holds information about AP exchange

apreq: output AP-REQ variable.
Build AP-REQ using shishi_ap_req_build() and return it.
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 80

shishi_ap_key
Shishi_key * shishi_ap_key (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Extract the application key from AP. If subkeys are used, it is taken from the Au-
thenticator, otherwise the session key is used.

Return value: Return application key from AP.

shishi_ap_rep

Shishi_asnl shishi_ap_rep (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Get ASN.1 AP-REP structure from AP exchange.

Return value: Returns the AP-REP from the AP exchange, or NULL if not yet set
or an error occured.

shishi_ap_rep_set

void shishi_ap_rep_set (Shishi_ap * ap, Shishi_asnl aprep) [Function]
ap: structure that holds information about AP exchange

aprep: aprep to store in AP.
Set the AP-REP in the AP exchange.

shishi_ap_rep_der

int shishi_ap_rep_der (Shishi_ap * ap, char ** out, size_t * outlen) [Function]
ap: structure that holds information about AP exchange

out: output array with newly allocated DER encoding of AP-REP.
outlen: length of output array with DER encoding of AP-REP.

Build AP-REP using shishi_ap_rep_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI_OK iff successful.
shishi_ap_rep_der_set

int shishi_ap_rep_der_set (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it AP exchange. If decoding fails, the AP-REP in the
AP exchange remains.

Return value: Returns SHISHI_OK.

Chapter 5: Programming Manual 81

shishi_ap_rep_build

int shishi_ap_rep_build (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange
Checksum data in authenticator and add ticket and authenticator to AP-REP.
Return value: Returns SHISHI_OK iff successful.

shishi_ap_rep_asnl

int shishi_ap_rep_asnl (Shishi_ap * ap, Shishi_asnl * aprep) [Function]
ap: structure that holds information about AP exchange
aprep: output AP-REP variable.

Build AP-REP using shishi_ap_rep_build() and return it.
Return value: Returns SHISHI_OK iff successful.

shishi_ap_rep_verify
int shishi_ap_rep_verify (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Verify AP-REP compared to Authenticator.
Return value: Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

shishi_ap_rep_verify_der

int shishi_ap_rep_verify_der (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it in AP exchange using shishi_ap_rep_der_set()
and verify it using shishi_ap_rep_verify().

Return value: Returns SHISHI_OK, SHISHI_APREP_VERIFY _FAILED or an error.
shishi_ap_rep_verify_asnl
int shishi_ap_rep_verify_asnl (Shishi_ap * ap, Shishi_asnl aprep) [Function]
ap: structure that holds information about AP exchange
aprep: input AP-REP.

Set the AP-REP in the AP exchange using shishi_ap_rep_set () and verify it using
shishi_ap_rep_verify().

Return value: Returns SHISHI_OK, SHISHI_APREP_VERIFY _FAILED or an error.

Chapter 5: Programming Manual 82

shishi_ap_encapreppart

Shishi_asnl shishi_ap_encapreppart (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Get ASN.1 EncAPRepPart structure from AP exchange.

Return value: Returns the EncAPREPPart from the AP exchange, or NULL if not
yet set or an error occured.

shishi_ap_encapreppart_set

void shishi_ap_encapreppart_set (Shishi_ap * ap, Shishi_asnl [Function]
encapreppart)
ap: structure that holds information about AP exchange

encapreppart: EncAPRepPart to store in AP.
Set the EncAPRepPart in the AP exchange.

shishi_ap_option2string

const char * shishi_ap_option2string (Shishi_apoptions option) [Function]
option: enumerated AP-Option type, see Shishi_apoptions.

Convert AP-Option type to AP-Option name string. Note that option must be
just one of the AP-Option types, it cannot be an binary ORed indicating several
AP-Options.

Return value: Returns static string with name of AP-Option that must not be deal-
located, or "unknown" if AP-Option was not understood.

shishi_ap_string2option

Shishi_apoptions shishi_ap_string2option (const char * str) [Function]
str: zero terminated character array with name of AP-Option, e.g. "use-session-key".

Convert AP-Option name to AP-Option type.

Return value: Returns enumerated type member corresponding to AP-Option, or 0
if string was not understood.

shishi_apreq
Shishi_asnl shishi_apreq (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new AP-REQ, populated with some default values.
Return value: Returns the AP-REQ or NULL on failure.

shishi_apreq_print

int shishi_apreq_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]

apreq)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

Chapter 5: Programming Manual 83

apreq: AP-REQ to print.
Print ASCII armored DER encoding of AP-REQ to file.
Return value: Returns SHISHI_OK iff successful.

shishi_apreq_save

int shishi_apreq_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]

apreq)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

apreq: AP-REQ to save.

Save DER. encoding of AP-REQ to file.

Return value: Returns SHISHI_OK iff successful.

shishi_apreq_to_file

int shishi_apreq_to_file (Shishi * handle, Shishi_asnl apreq, int [Function]
filetype, const char * filename)
handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write AP-REQ to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI_OK iff successful.

shishi_apreq_parse

int shishi_apreq_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

apreq)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read ASCII armored DER encoded AP-REQ from file and populate given variable.
Return value: Returns SHISHI_OK iff successful.

shishi_apreq_read

int shishi_apreq_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

apreq)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read DER encoded AP-REQ from file and populate given variable.
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 84

shishi_apreq_from_file

int shishi_apreq_from_file (Shishi * handle, Shishi_asnl * apreq, [Function]
int filetype, const char * filename)
handle: shishi handle as allocated by shishi_init().

apreq: output variable with newly allocated AP-REQ.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read AP-REQ from file in specified TYPE.

Return value: Returns SHISHI_OK iff successful.

shishi_apreq_set_authenticator

int shishi_apreq_set_authenticator (Shishi * handle, Shishi_asnl [Function]
apreq, int32_t etype, uint32_t kvno, const char * buf, size_t buflen)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to add authenticator field to.

etype: encryption type used to encrypt authenticator.
kvno: version of the key used to encrypt authenticator.
buf: input array with encrypted authenticator.

buflen: size of input array with encrypted authenticator.

Set the encrypted authenticator field in the AP-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded authenticator. To save
time, you may want to use shishi_apreq_add_authenticator () instead, which cal-
culates the encrypted data and calls this function in one step.

Return value: Returns SHISHI_OK on success.
shishi_apreq_add_authenticator

int shishi_apreq_add_authenticator (Shishi * handle, Shishi_asnl [Function]
apreq, Shishi_key * key, int keyusage, Shishi_asnl authenticator)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to add authenticator field to.

key: key to to use for encryption.

keyusage: cryptographic key usage value to use in encryption.

authenticator: authenticator as allocated by shishi_authenticator().
Encrypts DER encoded authenticator using key and store it in the AP-REQ.
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual

shishi_apreq_set_ticket

int shishi_apreq_set_ticket (Shishi * handle, Shishi_asnl apreq,
Shishi_asnl ticket)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to add ticket field to.

ticket: input ticket to copy into AP-REQ ticket field.
Copy ticket into AP-REQ.

Return value: Returns SHISHI_OK iff successful.

shishi_apreq_options

int shishi_apreq_options (Shishi * handle, Shishi_asnl apreq,
uint32_t * flags)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to get options from.

flags: Output integer containing options from AP-REQ.
Extract the AP-Options from AP-REQ into output integer.
Return value: Returns SHISHI_OK iff successful.

shishi_apreq_use_session_key_p

int shishi_apreq_use_session_key_p (Shishi * handle, Shishi_asnl

apreq)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Use session key" option is set in the AP-REQ.
Return value: Returns SHISHI_OK iff successful.

shishi_apreq_mutual_required_p

int shishi_apreq_mutual_required_p (Shishi * handle, Shishi_asnl

apreq)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Mutual required" option is set in the AP-REQ.
Return value: Returns SHISHI_OK iff successful.

shishi_apreq_options_set

int shishi_apreq_options_set (Shishi * handle, Shishi_asnl apreq,
uint32_t options)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().
options: Options to set in AP-REQ.

Set the AP-Options in AP-REQ to indicate integer.
Return value: Returns SHISHI_OK iff successful.

85

[Function]

[Function]

[Function]

[Function]

[Function]

Chapter 5: Programming Manual 86

shishi_apreq_options_add

int shishi_apreq_options_add (Shishi * handle, Shishi_asnl apreq, [Function]
uint32_t option)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().
option: Options to add in AP-REQ.

Add the AP-Options in AP-REQ. Options not set in input parameter option are
preserved in the AP-REQ.

Return value: Returns SHISHI_OK iff successful.
shishi_apreq_options_remove

int shishi_apreq_options_remove (Shishi * handle, Shishi_asnl [Function]
apreq, uint32_t option)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().
option: Options to remove from AP-REQ.

Remove the AP-Options from AP-REQ. Options not set in input parameter option
are preserved in the AP-REQ.

Return value: Returns SHISHI_OK iff successful.
shishi_apreq_get_authenticator_etype

int shishi_apreq_get_authenticator_etype (Shishi * handle, [Function]
Shishi_asnl apreq, int32_t * etype)
handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ variable to get value from.
etype: output variable that holds the value.
Extract AP-REQ.authenticator.etype.

Return value: Returns SHISHI_OK iff successful.

shishi_apreq_get_ticket

int shishi_apreq_get_ticket (Shishi * handle, Shishi_asnl apreq, [Function]
Shishi_asnl * ticket)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ variable to get ticket from.
ticket: output variable to hold extracted ticket.
Extract ticket from AP-REQ.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 87

shishi_aprep

Shishi_asnl shishi_aprep (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new AP-REP, populated with some default values.
Return value: Returns the authenticator or NULL on failure.

shishi_aprep_print

int shishi_aprep_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]

aprep)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

aprep: AP-REP to print.

Print ASCII armored DER encoding of AP-REP to file.
Return value: Returns SHISHI_OK iff successful.

shishi_aprep_save

int shishi_aprep_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]

aprep)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

aprep: AP-REP to save.

Save DER encoding of AP-REP to file.

Return value: Returns SHISHI_OK iff successful.

shishi_aprep_to_file

int shishi_aprep_to_file (Shishi * handle, Shishi_asnl aprep, int [Function]
filetype, const char * filename)
handle: shishi handle as allocated by shishi_init().

aprep: AP-REP to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write AP-REP to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI_OK iff successful.

shishi_aprep_parse

int shishi_aprep_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

aprep)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

aprep: output variable with newly allocated AP-REP.

Read ASCII armored DER encoded AP-REP from file and populate given variable.
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 88

shishi_aprep_read

int shishi_aprep_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

aprep)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.

aprep: output variable with newly allocated AP-REP.

Read DER encoded AP-REP from file and populate given variable.
Return value: Returns SHISHI_OK iff successful.

shishi_aprep_from_file

int shishi_aprep_from_file (Shishi * handle, Shishi_asnl * aprep, [Function]
int filetype, const char * filename)
handle: shishi handle as allocated by shishi_init ().

aprep: output variable with newly allocated AP-REP.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read AP-REP from file in specified TYPE.

Return value: Returns SHISHI_OK iff successful.

shishi_aprep_get_enc_part_etype

int shishi_aprep_get_enc_part_etype (Shishi * handle, [Function]
Shishi_asnl aprep, int32_t * etype)
handle: shishi handle as allocated by shishi_init().

aprep: AP-REP variable to get value from.
etype: output variable that holds the value.
Extract AP-REP.enc-part.etype.

Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart

Shishi_asnl shishi_encapreppart (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init().

This function creates a new EncAPRepPart, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.

Return value: Returns the encapreppart or NULL on failure.
shishi_encapreppart_print

int shishi_encapreppart_print (Shishi * handle, FILE * fh, [Function]
Shishi_asnl encapreppart)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

Chapter 5: Programming Manual 89

encapreppart: EncAPRepPart to print.
Print ASCII armored DER encoding of EncAPRepPart to file.
Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_save

int shishi_encapreppart_save (Shishi * handle, FILE * fh, [Function]
Shishi_asnl encapreppart)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

encapreppart: EncAPRepPart to save.

Save DER encoding of EncAPRepPart to file.
Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_to_file

int shishi_encapreppart_to_file (Shishi * handle, Shishi_asnl [Function]
encapreppart, int filetype, const char * filename)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write EncAPRepPart to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_parse

int shishi_encapreppart_parse (Shishi * handle, FILE * fh, [Function]
Shishi_asnl * encapreppart)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.
encapreppart: output variable with newly allocated EncAPRepPart.

Read ASCII armored DER encoded EncAPRepPart from file and populate given
variable.

Return value: Returns SHISHI_OK iff successful.
shishi_encapreppart_read

int shishi_encapreppart_read (Shishi * handle, FILE * fh, [Function]
Shishi_asnl * encapreppart)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for reading.

encapreppart: output variable with newly allocated EncAPRepPart.
Read DER encoded EncAPRepPart from file and populate given variable.
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 90

shishi_encapreppart_from_file

int shishi_encapreppart_from_file (Shishi * handle, Shishi_asnl [Function]
* encapreppart, int filetype, const char * filename)
handle: shishi handle as allocated by shishi_init ().

encapreppart: output variable with newly allocated EncAPRepPart.
filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read EncAPRepPart from file in specified TYPE.

Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_get_key

int shishi_encapreppart_get_key (Shishi * handle, Shishi_asnl [Function]
encapreppart, Shishi_key ** key)
handle: shishi handle as allocated by shishi_init().

encapreppart: input EncAPRepPart variable.

key: newly allocated key.

Extract the subkey from the encrypted AP-REP part.
Return value: Returns SHISHI_0OK iff successful.

shishi_encapreppart_ctime

int shishi_encapreppart_ctime (Shishi * handle, Shishi_asnl [Function]
encapreppart, char ** t)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
t: newly allocated zero-terminated character array with client time.
Extract client time from EncAPRepPart.

Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_ctime_set

int shishi_encapreppart_ctime_set (Shishi * handle, Shishi_asnl [Function]
encapreppart, const char * t)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
t: string with generalized time value to store in EncAPRepPart.

Store client time in EncAPRepPart.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 91

shishi_encapreppart_cusec_get

int shishi_encapreppart_cusec_get (Shishi * handle, Shishi_asnl [Function]
encapreppart, uint32_t * cusec)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
cusec: output integer with client microseconds field.

Extract client microseconds field from EncAPRepPart.

Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_cusec_set

int shishi_encapreppart_cusec_set (Shishi * handle, Shishi_asnl [Function]
encapreppart, uint32_t cusec)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
cusec: client microseconds to set in authenticator, 0-999999.

Set the cusec field in the Authenticator.

Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_seqnumber_get

int shishi_encapreppart_seqnumber_get (Shishi * handle, [Function]
Shishi_asnl encapreppart, uint32_t * seqnumber)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
seqnumber: output integer with sequence number field.

Extract sequence number field from EncAPRepPart.

Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_seqnumber_remove

int shishi_encapreppart_seqnumber_remove (Shishi * handle, [Function]
Shishi_asnl encapreppart)
handle: shishi handle as allocated by shishi_init ().

encapreppart: encapreppart as allocated by shishi_encapreppart ().
Remove sequence number field in EncAPRepPart.
Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_seqnumber_set

int shishi_encapreppart_seqnumber_set (Shishi * handle, [Function]
Shishi_asnl encapreppart, uint32_t seqnumber)
handle: shishi handle as allocated by shishi_init().

encapreppart: encapreppart as allocated by shishi_encapreppart().

Chapter 5: Programming Manual

92

seqnumber: integer with sequence number field to store in encapreppart.

Store sequence number field in EncAPRepPart.

Return value: Returns SHISHI_OK iff successful.

shishi_encapreppart_time_copy

int shishi_encapreppart_time_copy (Shishi * handle, Shishi_asnl [Function]
encapreppart, Shishi_asnl authenticator)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().

authenticator: Authenticator to copy time fields from.

Copy time fields from Authenticator into EncAPRepPart.
Return value: Returns SHISHI_OK iff successful.

5.5 SAFE and PRIV Functions

The “KRB-SAFE” is an ASN.1 structure used by application client and servers to exchange
integrity protected data. The integrity protection is keyed, usually with a key agreed on
via the AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions|, page 71). The
following illustrates the KRB-SAFE ASN.1 structure.

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (20),
safe-body [2] KRB-SAFE-BODY,
cksum [3] Checksum

}

KRB-SAFE-BODY = SEQUENCE {
user—-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress,
r-address [5] HostAddress OPTIONAL

}

shishi_safe

int shishi_safe (Shishi * handle, Shishi_safe ** safe) [Function]
handle: shishi handle as allocated by shishi_init().

safe: pointer to new structure that holds information about SAFE exchange

Create a new SAFE exchange.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 93

shishi_safe_done

void shishi_safe_done (Shishi_safe * safe) [Function]
safe: structure that holds information about SAFE exchange

Deallocate resources associated with SAFE exchange. This should be called by the
application when it no longer need to utilize the SAFE exchange handle.

shishi_safe_key

Shishi_key * shishi_safe_key (Shishi_safe * safe) [Function]
safe: structure that holds information about SAFE exchange

Get key structured from SAFE exchange.

Return value: Returns the key used in the SAFE exchange, or NULL if not yet set
or an error occured.

shishi_safe_key_set

void shishi_safe_key_set (Shishi_safe * safe, Shishi_key * key) [Function]
safe: structure that holds information about SAFE exchange

key: key to store in SAFE.
Set the Key in the SAFE exchange.

shishi_safe_safe

Shishi_asnl shishi_safe_safe (Shishi_safe * safe) [Function]
safe: structure that holds information about SAFE exchange

Get ASN.1 SAFE structured from SAFE exchange.

Return value: Returns the ASN.1 safe in the SAFE exchange, or NULL if not yet set
or an error occured.

shishi_safe_safe_set

void shishi_safe_safe_set (Shishi_safe * safe, Shishi_asnl [Function]
asnlsafe)
safe: structure that holds information about SAFE exchange

asnlsafe: KRB-SAFE to store in SAFE exchange.
Set the KRB-SAFE in the SAFE exchange.

shishi_safe_safe_der

int shishi_safe_safe_der (Shishi_safe * safe, char ** out, size_t * [Function]
outlen)
safe: safe as allocated by shishi_safe().

out: output array with newly allocated DER encoding of SAFE.
outlen: length of output array with DER encoding of SAFE.

Chapter 5: Programming Manual 94

DER encode SAFE structure. Typically shishi_safe_build() is used to build the
SAFE structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Return value: Returns SHISHI_OK iff successful.
shishi_safe_safe_der_set

int shishi_safe_safe_der_set (Shishi_safe * safe, char * der, [Function]
size_t derlen)
safe: safe as allocated by shishi_safe().

der: input array with DER encoded KRB-SAFE.
derlen: length of input array with DER encoded KRB-SAFE.

DER decode KRB-SAFE and set it SAFE exchange. If decoding fails, the KRB-SAFE
in the SAFE exchange remains.

Return value: Returns SHISHI_OK.
shishi_safe_print

int shishi_safe_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]
safe)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for writing.

safe: SAFE to print.

Print ASCII armored DER encoding of SAFE to file.
Return value: Returns SHISHI_OK iff successful.

shishi_safe_save

int shishi_safe_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]
safe)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

safe: SAFE to save.

Save DER encoding of SAFE to file.

Return value: Returns SHISHI_OK iff successful.

shishi_safe_to_file

int shishi_safe_to_file (Shishi * handle, Shishi_asnl safe, int [Function]
filetype, const char * filename)
handle: shishi handle as allocated by shishi_init().

safe: SAFE to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write SAFE to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 95

shishi_safe_parse

int shishi_safe_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]
safe)
handle: shishi handle as allocated by shishi_init().

th: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read ASCII armored DER encoded SAFE from file and populate given variable.
Return value: Returns SHISHI_OK iff successful.

shishi_safe_read

int shishi_safe_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]
safe)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read DER encoded SAFE from file and populate given variable.
Return value: Returns SHISHI_OK iff successful.

shishi_safe_from_file

int shishi_safe_from_file (Shishi * handle, Shishi_asnl * safe, int [Function]
filetype, const char * filename)
handle: shishi handle as allocated by shishi_init().

safe: output variable with newly allocated SAFE.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read SAFE from file in specified TYPE.

Return value: Returns SHISHI_OK iff successful.

shishi_safe_cksum

int shishi_safe_cksum (Shishi * handle, Shishi_asnl safe, int32_t * [Function]
cksumtype, char ** cksum, size_-t * cksumlen)
handle: shishi handle as allocated by shishi_init().

safe: safe as allocated by shishi_safe().

cksumtype: output checksum type.

cksum: output array with newly allocated checksum data from SAFE.
cksumlen: output size of output checksum data buffer.

Read checksum value from KRB-SAFE. cksum is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 96

shishi_safe_set_cksum

int shishi_safe_set_cksum (Shishi * handle, Shishi_asnl safe, [Function]
int32_t cksumtype, const char * cksum, size_t cksumlen)
handle: shishi handle as allocated by shishi_init ().

safe: safe as allocated by shishi_safe().

cksumtype: input checksum type to store in SAFE.
cksum: input checksum data to store in SAFE.
cksumlen: size of input checksum data to store in SAFE.

Store checksum value in SAFE. A checksum is usually created by calling shishi_
checksum() on some application specific data using the key from the ticket that is
being used. To save time, you may want to use shishi_safe_build () instead, which
calculates the checksum and calls this function in one step.

Return value: Returns SHISHI_OK iff successful.
shishi_safe_user_data

int shishi_safe_user_data (Shishi * handle, Shishi_asnl safe, char [Function]
** userdata, size_-t * userdatalen)
handle: shishi handle as allocated by shishi_init ().

safe: safe as allocated by shishi_safe().
userdata: output array with newly allocated user data from KRB-SAFE.
userdatalen: output size of output user data buffer.

Read user data value from KRB-SAFE. userdata is allocated by this function, and
it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI_OK iff successful.
shishi_safe_set_user_data

int shishi_safe_set_user_data (Shishi * handle, Shishi_asnl safe, [Function]
const char * userdata, size_t userdatalen)
handle: shishi handle as allocated by shishi_init().

safe: safe as allocated by shishi_safe().

userdata: input user application to store in SAFE.
userdatalen: size of input user application to store in SAFE.
Set the application data in SAFE.

Return value: Returns SHISHI_OK iff successful.

shishi_safe_build

int shishi_safe_build (Shishi_safe * safe, Shishi_key * key) [Function]
safe: safe as allocated by shishi_safe().

key: key for session, used to compute checksum.

Chapter 5: Programming Manual 97

Build checksum and set it in KRB-SAFE. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.

Return value: Returns SHISHI_OK iff successful.

shishi_safe_verify

int shishi_safe_verify (Shishi_safe * safe, Shishi_key * key) [Function]

safe: safe as allocated by shishi_safe().
key: key for session, used to verify checksum.

Verify checksum in KRB-SAFE. Note that this follows RFC 1510bis and is incom-
patible with RFC 1510, although presumably few implementations use the RFC1510
algorithm.

Return value: Returns SHISHI_OK iff successful, SHISHI_SAFE_BAD_KEYTYPE
if an incompatible key type is used, or SHISHI_SAFE_VERIFY_FAILED if the actual
verification failed.

The “KRB-PRIV” is an ASN.1 structure used by application client and servers to ex-
change confidential data. The confidentiality is keyed, usually with a key agreed on via the
AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions|, page 71). The following
illustrates the KRB-PRIV ASN.1 structure.

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (21),
-- NOTE: there is no [2] tag
enc-part [3] EncryptedData -- EncKrbPrivPart
}
EncKrbPrivPart = [APPLICATION 28] SEQUENCE {
user—data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress -- sender’s addr --,
r-address [6] HostAddress OPTIONAL -- recip’s addr
}

shishi_priv

int shishi_priv (Shishi * handle, Shishi_priv ** priv) [Function]

handle: shishi handle as allocated by shishi_init().

priv: pointer to new structure that holds information about PRIV exchange
Create a new PRIV exchange.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 98

shishi_priv_done
void shishi_priv_done (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Deallocate resources associated with PRIV exchange. This should be called by the
application when it no longer need to utilize the PRIV exchange handle.

shishi_priv_key
Shishi_key * shishi_priv_key (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Get key from PRIV exchange.

Return value: Returns the key used in the PRIV exchange, or NULL if not yet set
or an error occured.

shishi_priv_key_set
void shishi_priv_key_set (Shishi_priv * priv, Shishi_key * key) [Function]
priv: structure that holds information about PRIV exchange

key: key to store in PRIV.
Set the Key in the PRIV exchange.

shishi_priv_priv
Shishi_asnl shishi_priv_priv (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Get ASN.1 PRIV structure in PRIV exchange.

Return value: Returns the ASN.1 priv in the PRIV exchange, or NULL if not yet set
or an error occured.

shishi_priv_priv_set

void shishi_priv_priv_set (Shishi_priv * priv, Shishi_asnl [Function]
asnlpriv)
priv: structure that holds information about PRIV exchange

asnlpriv: KRB-PRIV to store in PRIV exchange.
Set the KRB-PRIV in the PRIV exchange.

shishi_priv_priv_der

int shishi_priv_priv_der (Shishi_priv * priv, char ** out, size_t * [Function]
outlen)
priv: priv as allocated by shishi_priv().

out: output array with newly allocated DER encoding of PRIV.
outlen: length of output array with DER encoding of PRIV.

Chapter 5: Programming Manual 99

DER encode PRIV structure. Typically shishi_priv_build() is used to build the
PRIV structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Return value: Returns SHISHI_OK iff successful.
shishi_priv_priv_der_set

int shishi_priv_priv_der_set (Shishi_priv * priv, char * der, [Function]
size_t derlen)
priv: priv as allocated by shishi_priv().

der: input array with DER encoded KRB-PRIV.
derlen: length of input array with DER encoded KRB-PRIV.

DER decode KRB-PRIV and set it PRIV exchange. If decoding fails, the KRB-PRIV
in the PRIV exchange remains.

Return value: Returns SHISHI_OK.

shishi_priv_encprivpart

Shishi_asnl shishi_priv_encprivpart (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Get ASN.1 EncPrivPart structure from PRIV exchange.

Return value: Returns the ASN.1 encprivpart in the PRIV exchange, or NULL if not
yet set or an error occured.

shishi_priv_encprivpart_set

void shishi_priv_encprivpart_set (Shishi_priv * priv, Shishi_asnl [Function]
asnlencprivpart)
priv: structure that holds information about PRIV exchange

asnlencprivpart: ENCPRIVPART to store in PRIV exchange.
Set the ENCPRIVPART in the PRIV exchange.

shishi_priv_encprivpart_der

int shishi_priv_encprivpart_der (Shishi_priv * priv, char ** out, [Function]
size_t * outlen)
priv: priv as allocated by shishi_priv().

out: output array with newly allocated DER encoding of ENCPRIVPART.
outlen: length of output array with DER encoding of ENCPRIVPART.

DER encode ENCPRIVPART structure. out is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 100

shishi_priv_encprivpart_der_set

int shishi_priv_encprivpart_der_set (Shishi_priv * priv, char * [Function]
der, size_t derlen)
priv: priv as allocated by shishi_priv().

der: input array with DER encoded ENCPRIVPART.
derlen: length of input array with DER encoded ENCPRIVPART.

DER decode ENCPRIVPART and set it PRIV exchange. If decoding fails, the
ENCPRIVPART in the PRIV exchange remains.

Return value: Returns SHISHI_OK.
shishi_priv_print

int shishi_priv_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]
priv)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

priv: PRIV to print.

Print ASCII armored DER encoding of PRIV to file.
Return value: Returns SHISHI_OK iff successful.

shishi_priv_save

int shishi_priv_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]
priv)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

priv: PRIV to save.

Save DER encoding of PRIV to file.

Return value: Returns SHISHI_OK iff successful.

shishi_priv_to_file

int shishi_priv_to_file (Shishi * handle, Shishi_asnl priv, int [Function]
filetype, const char * filename)
handle: shishi handle as allocated by s