
SolveDSGE v0.4.1 – A User Guide

Richard Dennis∗

University of Glasgow and CAMA

April 2021

Abstract

SolveDSGE is a Julia package for solving nonlinear Dynamic Stochastic General Equilibrium
models. A variety of solution methods are available, and they are interchangable so that one
solution can be used subsequently as an initialization for another allowing accurate solutions
to be quickly obtained. The package can compute first-, second-, and third-order perturbation
solutions and Chebyshev-based, Smolyak-based, and piecewise linear-based projection solutions.
Once a model has been solved, the package can used used to simulate data and compute impulse
response functions.

JEL Classification: E3, E4, E5.

∗Address for Correspondence: Adam Smith Business School, University of Glasgow, Main Building, University
Avenue, Glasgow G12 8QQ; email: richard.dennis@glasgow.ac.uk.



1 Introduction

SolveDSGE is a framework for solving and analyzing Dynamic Stochastic General Equilibrium

(DSGE) models that is implemented in the programming language Julia. SolveDSGE will solve

nonlinear DSGE models using perturbation methods, producing solutions that are accurate to first,

second, and third order, but this is not its focus. The package’s focus is on applying projection

methods to obtain solutions that are globally accurate.

Obtaining globally accurate solutions to nonlinear DSGE models is notoriously diffi cult. Solu-

tions are invariably slow to obtain and model-specific characteristics are often exploited to speed up

the solution process. SolveDSGE does not exploit model-specific characteristics in order to solve

a model. Instead, SolveDSGE applies the same general solution strategy to all models. Nonethe-

less, making use of Julia’s speed, SolveDSGE allows models to be solved “relatively quickly”, and

it provides users with an easy, unified, way of organizing and expressing their model. At the user’s

request, globally accurate solutions can be obtained using Chebyshev polynomials, Smolyak poly-

nomials, or piecewise linear approximations, with the solution obtained from one approximation

scheme able to be used as an initialization for the others, allowing greater speed and accuracy to

be obtained via a form of homotophy.

To use SolveDSGE to solve a model, two files must be supplied. The first file (the model file)

summarizes the model to be solved. The second file (the solution file) reads the model file, solves

the model, and performs any post-solution analysis.

Quite a lot of time and effort has gone into writing SolveDSGE, together with the underlying

modules: ChebyshevApprox, SmolyakApprox, and PiecewiseLinearApprox, but it is far from per-

fect. SolveDSGE may not be able to solve your model, or it may not obtain a solution quickly

enough to be useful to you. You are welcome to suggest improvements to fix bugs or add function-

ality. At the same time, I am hopeful that you will find the package useful for your research. If it is,

then please cite this User Guide and add an acknowledgement of SolveDSGE to your paper/report.

2 What types of models can be solved?

SolveDSGE is designed to solve models that can be written in the following standard form:

Et [f (xt,yt,xt+1,yt+1, εt+1)] = 0, (1)

where xt is a vector of state variables, yt is a vector of jump variables, and εt+1 is a vector of shocks.

The DSGE model’s first-order conditions and constraints are specified equation-by-equation. The

shocks, state variables, and jump variables are defined and then SolveDSGE takes the model and

1



expresses it in the form of equation (1) in preparation for solution. Equation (1) covers a wide set of

models, but obviously not all models. In principle SolveDSGE can handle standard business cycle

models of the real and new Keynesian varieties, and it can handle models with volatility shocks, but

it cannot solve heterogeneous agents models, nor models with generalized Euler equation like those

that emerge from discretionary policy problems or from models with quasi-geometric discounting.

Allowing for models that contain generalized Euler equations is a topic for future work. Another

set of models that are not fully accommodated are those where the shocks are contemporaneously

correlated. Such models can be solved via the perturbation methods, but not via the projection

methods (due to the techniques used for quadrature).

3 The model file

SolveDSGE requires that the model to be solved is stored in a model file. The model file is simply a

text file so there is nothing particularly special about it. Every model file must contain the following

five information categories: “states:”, “jumps:”, “shocks:”, “parameters:”, and “equations:”; each

category name must end with a colon. Each category will begin with its name, such as “states:”

and conclude with an “end”. The model file can present these five categories in any order.

The information in each category can be presented with one element per line, or with multiple

elements on each line with each element separated by either a comma or a semi-colon. So if the

jump variables in the model are labor, consumption, and output, then this could be presented in a

variety of ways, such as:

jumps:

labor

consumption

output

end

or:

jumps:

labor, consumption, output

end

or:

jumps:

2



labor; consumption, output

end

The first lag of a variable is denoted with a -1, so the lag of consumption is consumption(-1).

Similarly the first lead of a variable is denoted with a +1, so the lead of consumption is denoted

consumption(+1). The first lag of any model variable is automatically included as a state variable,

second and higher lags should be given a name, defined by an equation, and included as a state

variable explicitly. The package may allow higher lags to processed automatically at a later stage.

In the package, shocks refers to the innovations to the shock processes, so if the shock process

is given by:

tech(+1) = rho ∗ tech+ sd ∗ epsilon,

then “tech”will be a state variable, “epsilon”will be a shock, and “rho”and “sd”will be para-

meters. If the model is deterministic, then it will contain no shocks.

Every element in the equations category must contain an “=” sign, such as: “output =

exp(tech)∗capitalˆalpha∗ laborˆ(1.0−alpha)”. In the case of the paramerters category, parameter
values can (and will usually) be assigned in the model file, such as: “alpha = 0.33”. However,

parameters can also be assigned values at a later stage– after the model has been processed. It

can be useful to assign values to parameters after the model has been processed as this facilitates

estimation and allows a model to be solved for a range of parameterizations. To assign a value

to a parameter after the model has been processed, only the parameter name gets listed in the

parameters category: “alpha”.

3.1 Example

The following is an example of a model file for the stochastic growth model:

states:

cap, tech

end

jumps:

cons

end

3



shocks:

epsilon

end

parameters:

betta = 0.99

sigma = 1.1

delta = 0.025

alpha = 0.30

rho = 0.8

sd = 0.01

end

equations:

cap(+1) = (1.0 - delta)*cap + exp(tech)*cap^alpha - cons

cons^(-sigma) = betta*cons(+1)^(-sigma)*(1.0 - delta + alpha*exp(tech(+1))*cap(+1)^(alpha

- 1.0))

tech(+1) = rho*tech + sd*epsilon

end

4 Solving a model

Solving a model is straightforward; it consists of the following steps:

1. Read and process the model file. During the processing the order of variables in the system

may be changed, typically the changes are to place the shocks at the top of the system. After

processing is complete you will be told what the variable-order is. Any parameters that do

not have values assigned are also reported.

2. Assign values to any parameters that were not given a value in the model file.

3. Solve for the model’s steady state. This is actually an optional step, if the model is to be

solved using a projection method, but knowing the steady state is often useful.

4



4. Specify a SolutionScheme. A SolutionScheme specifies the solution method along with any

parameters needed to implement that solution method.

5. Solve the model according to the chosen SolutionScheme.

4.1 Reading the model and solving for its steady state

To read and process a model file we simply supply the path/filename to the process_model()

function, for example:

process_model("c:/desktop/model.txt")

The processed model is saved in the same folder as the model file, which in then retrieved and

stored in a structure:

dsge = retrieve_processed_model("c:/desktop/model_processed.txt")

When the model is processed the package may report that one of more parameters do not

have values assigned (the parameter names are listed). If this is the case, then values must be

assigned to these parameters before the model can be solved. This is simple to do through the

assign_parameters() function:

dsge = assign_parameters(dsge,params)

where params is a vector containing the needed values in the order that the parameters were

earlier listed. (The name of the model generated by the assign_parameters() function does not

need to be the same as the model fed into the function, and will generally be different.) We can

then solve for the model’s steady state as follows:

ss = compute_steady_state(dsge,tol,maxiters)

where dsge is the model whose steady state is to be computed, tol is a convergence tolerance,

and maxiters is an integer specifying the maximum number of iterations before the function exits.

4.2 Specifying a SolutionScheme

To solve a model a SolutionScheme must be supplied. A SolutionScheme specifies the solution

method and the parameters upon which that solution method relies. The solution methods in

SolveDSGE are either perturbation methods or projection methods. Accordingly, the Solution-

Schemes can be divided into PerturbationSchemes and ProjectionSchemes. We present each in

turn.

5



4.2.1 PerturbationSchemes

To solve a model using a perturbation method requires and PerturbationScheme. Regardless

of the model or the order of the perturbation, a PerturbationScheme is a structure with three

fields: the point about which to perturb the model (generally the steady state), a cutoff parameter

that separates unstable from stable eigenvalues (eigenvalues whose modulus is greater than cutoff

are placed in the model’s unstable block), and the order of the perturbation. For a first-order

perturbation, a typical PerturbationScheme might be the following

cutoff = 1.0

N = PerturbationScheme(ss,cutoff,"first")

while those for second and third order perturbations might be

NN = PerturbationScheme(ss,cutoff,"second")

and

NNN = PerturbationScheme(ss,cutoff,"third")

The method used to compute a first-order perturbation follows Klein (2000), that for a second-

order perturbation follows Gomme and Klein (2011), while that for a third-order perturbation

follows Binning (2013) with a refinement from Levintal (2017). At this point, perturbation solutions

higher than third order are not supported.

4.2.2 ProjectionSchemes

ProjectionSchemes are either ChebyshevSchemes, SmolyakSchemes, or PiecewiseLinearSchemes,

and for each of these there is a stochastic (for stochastic models) and a deterministic (for deter-

ministic models) version. The SolutionScheme for the deterministic case is a special case of the

stochastic one, so we focus on the stochastic case in what follows.

ChebyshevSchemes Solutions based on Chebyshev polynomials rely on and make use of all of

the functionality of the module ChebyshevApprox. This means that an arbitrary number of state

variables can be accommodated (if you have enough time!) and both tenser-product and complete

polynomials can be used. A stochastic ChebyshevScheme requires the following arguments:

6



• initial_guess – This will usually be a vector containing the model’s steady state. It is used

as the initial guess at the solution in the case where an initializing solution is not provided

(see the section on model solution below).

• node_generator – This is the name of the function used to generate the nodes for the

Chebyshev polynomial. Possible options include: chebyshev_nodes and chebyshev_extrema.

• node_number – This gives the number of nodes to be used for each state variable. If there

is only one state variables then node_number will be an integer. When there are two or

more state variables it will be a vector of integers.

• num_quad_nodes – This is an integer specifying the number of quadrature points used to

compute expectations.

• order – This defines the order of the Chebyshev polynomial to be used in the approximating

functions. For a complete polynomial order will be an integer; for a tenser-product polynomial

order will be a vector of integers.

• domain – This contains the domain for the state variables over which the solution is obtained.

Domain will be a 2−element vector in the one-state-variable case and a 2 × n array in the

n-state-variable case, with the first row of the array containing the upper values of the domain

and the second row containing the lower values of the domain. If an initializing solution is

provided, then the domain associated with that initializing solution can be used by setting

domain to an empty array, Float64[].

• tol_fix_point_solver – This specifies the tolerance to be used in the inner loop to determine

convergence at each solution node.

• tol_variables – This specifies the tolerance to be used in the outer loop to determine con-

vergence of the overall solution.

• maxiters – This is an integer specifying the maximum number of outer-loop iterations before

the solution exits.

An example of a stochastic ChebyshevScheme is:

C = ChebyshevSchemeStoch(ss,chebyshev_nodes,[21,21], 9, 4,[0.1 30.0; -0.1 20.0],1e-8,1e-6,1000)

In the deterministic case the number of quadrature nodes is not needed, i.e.,

7



Cdet = ChebyshevSchemeDet(ss,chebyshev_nodes,[21,21],4,[0.1 30.0; -0.1 20.0],1e-8,1e-6,1000)

SmolyakSchemes Underlying the Smolyak polynomial based solution is the module SmolyakAp-

prox. This module allows for both isotropic polynomials and ansiotropic polynomials and several

different methods for producing nodes. SolveDSGE exploits all of this functionality. A stochastic

SmolyakScheme requires the following arguments:

• initial_guess – This will usually be a vector containing the model’s steady state. It is used

as the initial guess at the solution in the case where an initializing solution is not provided

(see the section on model solution below).

• node_generator – This is the name of the function used to generate the nodes for the Smolyak
polynomial. Possible options include: chebyshev_gauss_lobatto and clenshaw_curtis_equidistant

• num_quad_nodes – This is an integer specifying the number of quadrature points used to

compute expectations.

• layer – This is an integer (isotropic case) or a vector of integers (ansiotropic case) specifying

the number of layers to be used in the approximation.

• domain – This contains the domain for the state variables over which the solution is obtained.

Domain will be a 2−element vector in the one-state-variable case and a 2 × n array in the

n-state-variable case, with the first row of the array containing the upper values of the domain

and the second row containing the lower values of the domain. If an initializing solution is

provided, then the domain associated with that initializing solution can be used by setting

domain to an empty array, Float64[].

• tol_fix_point_solver – This specifies the tolerance to be used in the inner loop to determine

convergence at each solution node.

• tol_variables – This specifies the tolerance to be used in the outer loop to determine con-

vergence of the overall solution.

• maxiters – This is an integer specifying the maximum number of outer-loop iterations before

the solution exits.

An example of a stochastic SmolyakScheme is:

8



S = SmolyakSchemeStoch(ss,chebyshev_gauss_lobatto,9,3,[0.1 30.0; -0.1 20.0],1e-8,1e-6,1000)

In the deterministic case the number of quadrature nodes is not needed, i.e.,

Sdet = SmolyakSchemeDet(ss,chebyshev_gauss_lobatto,3,[0.1 30.0; -0.1 20.0],1e-8,1e-6,1000)

PiecewiseLinearSchemes To obtain piecewise linear solutions, SolveDSGE employs the module

PiecewiseLinearApprox, which allows approximations over an arbitrary number of state variables.

A stochastic PiecewiseLinearScheme requires the following arguments:

• initial_guess – This will usually be a vector containing the model’s steady state. It is used

as the initial guess at the solution in the case where an initializing solution is not provided

(see the section on model solution below).

• node_number – This gives the number of nodes to be used for each state variable. If there

is only one state variables then node_number will be an integer. When there are two or

more state variables it will be a vector of integers.

• num_quad_nodes – This is an integer specifying the number of quadrature points used to

compute expectations.

• domain – This contains the domain for the state variables over which the solution is obtained.

Domain will be a 2−element vector in the one-state-variable case and a 2 × n array in the

n-state-variable case, with the first row of the array containing the upper values of the domain

and the second row containing the lower values of the domain. If an initializing solution is

provided, then the domain associated with that initializing solution can be used by setting

domain to an empty array, Float64[].

• tol_fix_point_solver – This specifies the tolerance to be used in the inner loop to determine

convergence at each solution node.

• tol_variables – This specifies the tolerance to be used in the outer loop to determine con-

vergence of the overall solution.

• maxiters – This is an integer specifying the maximum number of outer-loop iterations before

the solution exits.

An example of a stochastic PiecewiseLinearScheme is:

9



P = PiecewiseLinearStoch(ss,[21,21],9,[0.1 30.0; -0.1 20.0],1e-8,1e-6,1000)

In the deterministic case the number of quadrature nodes is not needed, i,e„

Pdet = PiecewiseLinearDet(ss,[21,21],[0.1 30.0; -0.1 20.0],1e-8,1e-6,1000)

4.3 Model solution

Once a SolutionScheme is specified we are in a position to solve the model. In order to do so we

use the solve_model() function, which takes either two or three arguments. For a perturbation

solution solve_model() requires two arguments: the model to be solved and the SolutionScheme,

as follows:

soln_first_order = solve_model(dsge,N)

soln_second_order = solve_model(dsge,NN)

soln_third_order = solve_model(dsge,NNN)

Alternatively, for a projection solution solve_model() takes either two, three, or four arguments.

To provide a concrete example, suppose we wish to solve our model using Chebyshev polynomials.

If we want the projection solution to be initialized using the steady state, then solve_model()

requires only two arguments: the model to be solved and the SolutionScheme:

soln_chebyshev = solve_model(dsge,C)

If we want the projection solution to be initialized using the third order perturbation solution,

then solve_model() requires three arguments: the model to be solved, the initializing solution, and

the SolutionScheme:

soln_chebyshev = solve_model(dsge,soln_third_order,C)

Although this example uses a third order perturbation as the initializing solution, any solution

(first order, second order, third order, Chebyshev, Smolyak, or piecewise linear) can be used.

Finally, the routines for obtaining projection solutions have multi-threaded variants where the

final argument in the function is an integer specifying the number of threads to be used. For

example:

soln_chebyshev = solve_model(dsge,C,4)

10



soln_chebyshev = solve_model(dsge,soln_third_order,C,4)

would solve the model using 4 threads. Before using these multi-threaded functions you will

need to know how many threads are available on your computer (Threads.nthreads()). Note, that

there is an overhead to using multi-threading so these functions may not always solve your model

more quickly and it is often the case that better performance can be achieved by not using all

available threads.

4.3.1 A comment on third-order perturbation

Sometimes it can be useful to add skewness to the shocks, but this is not easy to do through the

model file. If you want your shocks to be skewed, then you can access the third order perturbation

solution by calling:

soln_third_order = solve_third_order(dsge,NNN,skewness)

where skewness is a 2D array containing the skewness coeffi cients. If there is only one shock,

then the skewness array is:

skewness = E [ε1ε1ε1] .

If there are two shocks, then the skewness array is:

skewness = E

[
ε1ε1ε1 ε1ε1ε2 ε1ε2ε1 ε1ε2ε2
ε2ε1ε1 ε2ε1ε2 ε2ε2ε1 ε2ε2ε2

]
.

Etc.

4.3.2 Solution structures

When a model is solved the solution is returned in the form of a structure. The exact structure

returned depends on the solution method.

First-order perturbation The first-order perturbation solution takes the following form:

xt+1 = hxxt + kεt+1,

yt = gxxt.

The solution structure for a stochastic first-order perturbation has the following fields:

• hbar – The steady state of the state variables

• hx – The first-order coeffi cients in the state-transition equation

11



• k – The loading matrix on the shocks in the state-transition equation.

• gbar – The steady state of the jump variables

• gx – The first-order coeffi cients in the jump’s equation

• sigma – An identy matrix

• grc – The number of eigenvalues with modulus greater than cutoff.

• Soln_type – Either “determinate”, “indeterminate”, or “unstable”.

The solution to a deterministic model has the same fields as the stochastic solution with the

exceptions of k and sigma.

Second-order perturbation The second-order perturbation solution takes the following form:

xt+1 = hxxt +
1

2
hss +

1

2
(I⊗ xt)hxx (I⊗ xt) + kεt+1,

yt = gxxt +
1

2
gss +

1

2
(I⊗ xt)gxx (I⊗ xt) .

The solution structure for a stochastic second-order perturbation has the following fields:

• hbar – The steady state of the state variables

• hx – The first-order coeffi cients in the state-transition equation

• hss – The second-order stochastic adjustment to the mean in the state-transion equation

• hxx – The second-order coeffi cients in the state-transition equation

• k – The loading matrix on the shocks in the state-transition equation.

• gbar – The steady state of the jump variables

• gx – The first-order coeffi cients in the jump’s equation

• gss – The second-order stochastic adjustment to the mean in the jump’s equation

• gxx – The second-order coeffi cients in the jump’s equation

• sigma – An identy matrix

• grc – The number of eigenvalues with modulus greater than cutoff.

12



• Soln_type – Either “determinate”, “indeterminate”, or “unstable”.

The solution to a deterministic model has the same fields as the stochastic solution with the

exceptions of hss, k, gss, and sigma.

Third-order perturbation The third-order perturbation solution takes the following form:

xt+1 = hxxt +
1

2
hss +

1

2
hxx (xt ⊗ xt) +

1

6
hsss +

1

6
hssxxt +

1

6
hxxx (xt ⊗ xt ⊗ xt) + kεt+1,

yt = gxxt +
1

2
gss +

1

2
gxx (xt ⊗ xt) +

1

6
gsss +

1

6
gssxxt +

1

6
gxxx (xt ⊗ xt ⊗ xt) .

The solution structure for a stochastic third-order perturbation has the following fields:

• hbar – The steady state of the state variables

• hx – The first-order coeffi cients in the state-transition equation

• hss – The second-order stochastic adjustment to the mean in the state-transion equation

• hxx – The second-order coeffi cients in the state-transition equation

• hsss – The third-order stochastic adjustment to the mean in the state-transition equation

• hssx – The skewness adjustment to the state-transition equation

• hxxx – The third-order coeffi cents in the state-transition equation

• k – The loading matrix on the shocks in the state-transition equation.

• gbar – The steady state of the jump variables

• gx – The first-order coeffi cients in the jump’s equation

• gss – The second-order stochastic adjustment othe mean in the jump’s equation

• gxx – The second-order coeffi cients in the jump’s equation

• gsss – The third-order stochastic adjustment to the mean in the jump’s equation

• gssx – The skewness adjustment to the jump’s equation

• gxxx – The third-order coeffi cients in the jump’s equation

• sigma – An identy matrix

13



• grc – The number of eigenvalues with modulus greater than cutoff.

• Soln_type – Either “determinate”, “indeterminate”, or “unstable”.

The solution to a deterministic model has the same fields as the stochastic solution with the

exceptions of hss, hsss, hssx, k, gss, gsss, gssx, and sigma.

Chebyshev solution The solution structure for the Chebyshev solution has the following fields:

• variables – A vector of arrays containing the solution for each variable

• weights – A vector of arrays containing the weights for the Chebyshev polynomials

• nodes – A vector of vectors containing the Chebyshev nodes

• order – The order of the Chebyshev polynomials

• domain – The domain for the state variables

• sigma – The variance-covariance matrix for the shocks

• iteration_count – The number of iterations needed to achieve convergence

The solution to a deterministic model has the same fields with the exception of sigma.

Smolyak solution The solution structure for the Smolyak solution has the following fields:

• variables – A vector of arrays containing the solution for each variable

• weights: – A vector of vectors containing the weights for the polynomials

• grid – A matrix containing the Smolyak grid

• multi_index – A matrix containing the multi-index underlying the polynominals

• layer – The number of layers in the approximation

• domain – The domain for the state variables

• sigma – The variance-covariance matrix for the shocks

• iteration_count – The number of iterations needed to achieve convergence

The solution to a deterministic model has the same fields with the exception of sigma.

14



Piecewise linear solution The solution structure for the piecewise linear solution has the fol-

lowing fields:

• variables – A vector of arrays containing the solution for each variable

• nodes – A vector of vectors containing the nodes

• domain – The domain for the state variables

• sigma – The variance-covariance matrix for the shocks

• iteration_count – The number of iterations needed to achieve convergence

The solution to a deterministic model has the same fildls with the exception of sigma.

5 Post-solution analysis

Once you have solved your model there are many things that you might want to use the solution

for. Some of the more obvious things, such as simulating data from the solution and computing

impulse response functions have been built into SolveDSGE to make things easier for you.

5.1 Simulation

To simulate data from a model’s solution the function to use is simulate(), whose arguments are

a model solution, an initial state, and the number of observations to simulate. An optimal final

argument is the seed for the random number generator. An example of simulate() in action would

be:

data_states, data_jumps = simulate(soln,[0.0, 25.0],100000)

As this example makes clear, the simulate function returns two 2D arrays. The first array

contains simulated data for the state variables, the second array contains simulated data for the

jump variables. The simulate function can be applied to both stochastic and deterministic models.

5.2 Impulse response functions

Impulse responses are obtained using the impulses() function, which takes three arguments: the

model solution, the length of the impulse response function (number of periods), the nature of the

perturbation to apply, and the number of repetitions to use for the Monte Carlo integration. The

method used to compute the impulses draws on Potter (2000). Responses to both a positive and a

15



negative innovation are generated. An optimal final argument is the seed for the random number

generator. For a model with two shocks, an example of impulses() in use would be:

pos_responses, neg_responses = impulses(soln,50,[2,0],10000)

which applies a two standard deviation impulse to the first shock and no impulse to the second

shock. For the nonlinear solutions (second-order perturbation, third-order perturbation, and the

projection-based solutions) the initial state is “integrated-out” via a Monte Carlo that averages

over draws taken from the unconditional distribution of the state variables. At this stage in the

package’s development, the impulses need to be computed one perturbation at a time; this will

probably change at some point.

5.3 PDFs and CDFs

SolveDSGE contains functions for approximating the probability density function and the cumula-

tive distribution function of a variable, where the approximation is based on Fourier series (Kronmal

and Tarter, 1968). Most of the functionality relates to the univariate case, but some functionality

is included to approximate and evaluate the PDF in the multivariate case.

5.3.1 Univariate

To approximate the probability density function and evaluate the approximated function at a point

the function is:

f = approximate_density(sample,point,order,lower_bound,upper_bound)

where sample is a vector of data, point is the value at which the PDF is evaluated, order is the

order of the Fourier series approximation, and lower_bound and upper_bound specify the support

over which the PDF is constructed. If an approximation of the entire PDF is sought, then the

function is:

nodesf, f = approximate_density(sample,order,lower_bound,upper_bound)

Similarly, the cumulative distribution function is approximated and evaluated at a point using

the function:

F = approximate_distribution(sample,point,order,lower_bound,upper_bound)

16



where sample is a vector of data, point is the value at which the CDF is evaluated, order is the

order of the Fourier series approximation, and lower_bound and upper_bound specify the support

over which the CDF is constructed. If an approximation of the entire CDF is sought, then the

function is:

nodesF, F = approximate_distribution(sample,order,lower_bound,upper_bound)

5.3.2 Multivariate

In the multivaraite case the PDF can be approximated and evaluated at a point using the function:

f = approximate_density(sample,point,order,lower_bound,upper_bound)

where sample is a 2D array of data, point is a vector, order is a vector of integers, and

lower_bound and upper_bound are vectors. Similarly, the CDF can be approximated and evalu-

ated at a point using the function:

F = approximate_distribution(sample,point,order,lower_bound,upper_bound)

where sample is a 2D array of data, point is a vector, order is a vector of integers, and

lower_bound and upper_bound are vectors.

5.4 Evaluating accuracy

At this point SolveDSGE doesn’t have routines to assess numerical accuracy according to con-

ventional metrics like Euler equation errors. What SolveDSGE does do, however, is compare two

solutions and assess the magnitudes of any differences. This facilitates an adaptive approach to ap-

proximation and it allows robustness of the solution to be assessed across approximation schemes.

When comparing two models, SolveDSGE looks at the predicted values for the jump variables,

returning the maximum absolute difference for each jump variable found for a random sample of

100,000 realizations of the state variables. We compare two solution according to:

errors = compare_solutions(solna,solnb,domain,seed)

where solna and solnb are the two solutions to be compared, domain is the domain for the state

variables over which the comparison takes place, and seed is an optional argument that sets the

seed for the random number generator.

17



References

[1] Andreasen, M., Fernández-Villaverde, J., and J. Rubio-Ramirez, (2017), “The Pruned State-

Space System for Non-Linear DSGE Models: Theory and Empirical Applications”, Review of

Economic Studies, 0, pp. 1– 49.

[2] Binning, A., (2013), “Third-Order Approximation of Dynamic Models Without the Use of

Tensors”, Norges Bank Working Paper 2013—13.

[3] Gomme, P., and P. Klein, (2011), “Second-Order Approximation of Dynamic Models Without

the Use of Tensors”, Journal of Economic Dynamics and Control, 35, pp. 604– 615.

[4] Judd, K. (1992), “Projection Methods for Solving Aggregate Growth Models”, Journal of

Economic Theory, 58, pp.410– 452.

[5] Judd, K., Maliar, L., Maliar, S., and R. Valero, (2014), “Smolyak Method for Solving Dynamic

Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain”, Journal

of Economic Dynamics and Control, 44, pp. 92– 123.

[6] Judd, K., Maliar, L., Maliar, S., and I. Tsener, (2017), “How to Solve Dynamic Stochastic

Models Computing Expectations just Once”, Quantitative Economics, 8, pp.851– 893.

[7] Klein, P., (2000), “Using the Generalized Schur Form to Solve a Multivariate Linear Rational

Expectations Model”, Journal of Economic Dynamics and Control, 24, pp. 1405– 1423.

[8] Kronmal, R., and M. Tarter, (1968), “The Estimation of Probability Densities and Cumulatives

by Fourier Series Methods”, Journal of the American Statistical Association, 63, 323, pp.925—

952.

[9] Levintal, O., (2017), “Fifth-Order Perturbation Solution to DSGE models”, Journal of Eco-

nomic Dynamics and Control, 80, pp. 1—16.

[10] Potter, S., (2000), “Nonlinear Impulse Response Functions”, Journal of Economic Dynamics

and Control, 24, pp. 1425– 1446.

18


