
Package Guide for SolveDSGE

Richard Dennis�

University of Glasgow

August 25, 2015

�Email: richard.dennis@glasgow.ac.uk



1 Overview

SolveDSGE is a Julia package aimed at macroeconomics interested in solv-

ing Dynamic Stochastic General Equilibrium (DSGE) models. The package

provides routines for solving rational expectations models and for solving op-

timal policy problems. Using this package, DSGE models can be solved in

logs or levels to �rst- or second-order accuracy and optimal policy problems

can be solved under discretion, commitment, timeless-perspective commit-

ment, and quasi-commitment. Routines that solve robust-control versions

of these policy problems are in the works. Although there is much that this

package does not do, SolveDSGE o¤ers a broad array of solution methods

that can be applied provided the DSGE model can be expressed in one of

several standard dynamic representations.

2 Installation

To install SolveDSGE you will need to type the following into the Julia

REPL

Pkg.add("SolveDSGE")

3 Solving rational expectations models

3.1 First-order-accurate solution methods

SolveDSGE provides a range of solution methods for computing �rst-order

accurate solutions. Exploiting Julia�s multiple dispatch all of these solution

methods are called via the single command solve_re(). From this single

command the particular solution method employed depends principally on

the model type that enters the solve_re() function call. Models are rep-

resented in various forms that are summarized by types. The model types

1



are

� Blanchard_Kahn_Form

� Klein_Form

� Sims_Form

� Binder_Pesaran_Form

3.1.1 Blanchard-Kahn form

The Blanchard-Kahn Form is given by�
xt+1
Etyt+1

�
= A

�
xt
yt

�
+C [�t+1] ;

�t � i:i:d:[0;�], where xt is an nx � 1 vector of predetermined variables
and yt is an ny � 1 vector of non-predetermined variables. To solve models
of this form we �rst create the Blanchard_Kahn_Form type for the

model, then we use solve_re() to solve the model. The relevant lines of

code would be something like

cuto¤ = 1.0

model = Blanchard_Kahn_Form(nx,ny,a,c,sigma)

soln = solve_re(model,cuto¤)

Here soln contains the solution, which is of the form

xt+1 = Pxt +K�t+1;

yt = Fxt;

and information about the number of eigenvalues with modulus greater than

cuto¤ and whether the �solution� returned is determinate, indeterminate,

or explosive.

2



Models of the Blanchard_Kahn_Form type can also be solved using

an iterative method to solve a non-symmetric, continuous, algebraic, Riccati

equation. In this case the relevant lines of code might look like

tol = 1e-10

cuto¤ = 1.0

model = Blanchard_Kahn_Form(nx,ny,a,c,sigma)

soln = solve_re(model,cuto¤,tol)

For this iterative method, the variable cuto¤ is still used to establish

determinacy, but is not used to order eigenvalues.

3.1.2 Klein form

The Klein Form for a model is given by

B

�
xt+1
Etyt+1

�
= A

�
xt
yt

�
+C [�t+1] ;

�t � i:i:d:[0;�], where xt is an nx � 1 vector of predetermined variables, yt
is an ny�1 vector of non-predetermined variables, and B need not have full
rank. We can solve models of this form using the code

cuto¤ = 1.0

model = Klein_Form(nx,ny,a,b,c,sigma)

soln = solve_re(model,cuto¤)

The composite type soln contains the solution which is of the form

xt+1 = Pxt +K�t+1;

yt = Fxt;

as well as information about the number of eigenvalues that have modulus

greater than cuto¤ and whether the �solution� returned is determinate,

indeterminate, or explosive.

3



3.1.3 Sims form

An alternative model form is used by Sims (2000) and is given by

�0zt = �1zt�1 +C+	vt +��t;

where vt is a shock process, possibly serially correlated, with mean-zero

innovations whose variance-covarince matrix is given by �. To solve models

that are in this form we would do something like the following

cuto¤ = 1.0

model = Sims_Form(gamma0,gamma1,c,psi,pi,sigma)

soln = solve_re(model,cuto¤)

Here the solution, summarized by soln, is of the form

zt = G1zt�1 + c+ impact� vt + ywt�
�
I� fmat� L�1

��1 � fwt� vt+1:
3.1.4 Binder-Pesaran form

A model is in �structural form�if it is written as

Azt = A1zt�1 +BEtzt+1 +C�t;

where �t � i:i:d:[0;�]. We have two ways of solving structural form models.
The �rst recasts them in terms of the Klein form and here the relevant code

would look something like

cuto¤ = 1.0

model = Binder_Pesaran_Form(a,a1,b,c,sigma)

soln = solve_re(model,cuto¤)

The second method is iterative, implementing Binder and Pesaran�s

�brute force�method; here the code would be something like

4



tol = 1e-10

cuto¤ = 1.0

model = Binder_Pesaran_Form(a,a1,b,c,sigma)

soln = solve_re(model,cuto¤,tol)

Regardless of which of the two methods is used, the solution, summarized

in soln, has the form

zt = Pzt�1 +K�t:

As earlier, soln is a composite type that in addition to the solution itself also

contains information about the number of eigenvalues with modulus greater

than cuto¤and whether the solution returned is determinate, indeterminate,

or explosive.

3.2 Second-order-accurate solution methods

In addition to the �rst-order accurate solution methods documented above,

SolveDSGE also contains two methods form obtaining second-order-accurate

solutions to nonlinear DSGE models. As coded here, these two methods

employ the same model form but di¤er in how the solution is computed. To

employ either method the DSGE model is �rst expressed in the form

EtG (xt;yt;xt+1;yt+1) = 0:

With xt containing nx predetermined variables and yt containing ny non-

predetermined variables,G() is a vector containing nx+ny functions. Bundling

xt and yt into a new vector zt =
�
x
0
t y

0
t

�0
and bundling zt and zt+1 into

a new vector pt =
�
z
0
t z

0
t+1

�0
we get

EtG (pt) = 0:

We now approximate G (pt) around the deterministic steady state, p, using

a second-order Taylor expansion giving

G (pt) ' Gp (pt � p) + [I
 (pt � p)]
0
Gpp [I
 (pt � p)] = 0;

5



where Gp is a matrix of �rst-derivatives and Gpp is a matrix of stacked

Hessians, one Hessian for each of the nx + ny equations.

We now recognize that some elements of xt (usually the �rst s elements)

are shocks that have the form

st+1 = �st + ��t+1;

where �t � i:i:d:[0;�]. The essential components required for a second-

order-accurate solution are now given by nx, ny, Gp, Gpp, �, and �.

The two model types that we consider for second-order-accurate solution

methods are

� Gomme_Klein_Form

� Lombardo_Sutherland_Form

3.2.1 Gomme-Klein form

To compute a second-order accurate solution using the Gomme and Klein

(2011) method we summarize the model in the form of theGomme_Klein_Form

composite type. Once this model type is constructed the model can be

solved. The code to compute the solution would be something like

cuto¤ = 1.0

model = Gomme_Klein_Form(nx,ny,Gp,Gpp,eta,sigma)

soln = solve_re(model,cuto¤)

Here soln is a composite type that contains the solution, which is of the

form

xt+1 � x =
1

2
ssh+ hx (xt � x) +

1

2
[I
 (xt � x)]

0
hxx [I
 (xt � x)] + ��t+1;

yt � y =
1

2
ssg + gx (xt � x) +

1

2
[I
 (xt � x)]

0
gxx [I
 (xt � x)] ;

6



where hxx and gxx are stacked matrices containing the second order coe¢ -

cients for each of the nx and ny equations, respectively. soln also contains

information about the number of eigenvalues with modulus greater than

cuto¤ and the solution�s determinacy properties, where these properties are

associated with the model �rst-order dynamics.

3.2.2 Lombardo-Sutherland form

Implementing the Lombardo and Sutherland (2007) solution method is no

di¤erent than for Gomme and Klein (2010). The key di¤erence is the form

in which the solution is presented. Ths code to implement the Lombardo-

Sutherland method would look something like

cuto¤ = 1.0

model = Lombardo_Sutherland_Form(nx,ny,Gp,Gpp,eta,sigma)

soln = solve_re(model,cuto¤)

where now the solution has the form

xt+1 � x =
1

2
ssh+ hx (xt � x) +

1

2
hxx� vt + ��t+1;

yt � y =
1

2
ssg + gx (xt � x) +

1

2
gxx� vt;

vt = �vt�1 + �vech
�
�t�

0
t

�
+	vec

�
xt�

0
t

�
;

with vt given by

vt = vech
�
xtx

0
t

�
:

The solution form produced by the Lombardo-Sutherland method can

be converted into that produced by the Gomme-Klein method by using the

convert_second_order function as follows

new_soln = convert_second_order(soln)

Where soln is of type Lombardo_Sutherland_Soln, new_soln is

of type Gomme_Klein_Soln.

7



4 Solving optimal policy problems

SolveDSGE provides routines for solving Linear-Quadratic (LQ) optimal

policy problems. These LQ problems allow policy to be conducted un-

der: discretion; commitment; quasi-commitment; and timeless-perspective

commitment. The solutions to these four policy problems are obtained us-

ing the commands solve_disc(), solve_commit(), solve_quasi(), and

solve_timeless(), respectively. The optimal policy routines are based

around four model types and two solution types. At this stage not all of

these policies are supported for all model-types. The four model-types and

the optimal policies that they support are documented below.

4.1 State space form

The LQ optimal policy problem in State_Space_Form is described by

the quadratic objective function

Loss = E

" 1X
t=0

�t
�
z
0
tQzt + z

0
tUut + u

0
tU

0
zt + u

0
tRut

�#
;

and the linear constraints�
xt+1
Etyt+1

�
= A

�
xt
yt

�
+But +C [�t+1] ;

where xt contains nx predetermined variables, yt contains ny non-predetermined

variables, ut contains np policy instruments, and �t contains ns stochastic

innovations.

For this model form the following policies are supported:

� Discretion (st = xt)

� Commitment
�
st =

�
xt
�t

��

� Quasi-commitment
�
st =

�
xt
�t

��
8



� Timeless-perspective commitment

0@st =
24 xt
xt�1
ut�1

351A
For each policy the solution returned is of the form

st+1 = Pst +K�t+1;

zt = Hst;

ut = Fst:

with this information summarized in the solution type, State_Space_Soln.

To solve a model for each of the policies above we would use code like

the following

obj = State_Space_Objective(beta,q,u,r)

model = State_Space_Form(nx,ny,a,b,c,sigma)

tol = 1e-10

maxiters = 100

commit_prob = 0.75

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

soln_quasi = solve_quasi(model,obj,commit_prob,tol,maxiters)

soln_timeless = solve_timeless(model,obj,tol,maxiters)

4.2 Generalized state space form

The LQ optimal policy problem in Generalized_State_Space_Form is

described by the quadratic objective function

Loss = E

" 1X
t=0

�t
�
z
0
tQzt + z

0
tUut + u

0
tU

0
zt + u

0
tRut

�#
;

9



and the linear constraints�
xt+1

A0Etyt+1

�
= A

�
xt
yt

�
+But +C [�t+1] ;

where xt contains nx predetermined variables, yt contains ny non-predetermined

variables, ut contains np policy instruments, and �t contains ns stochastic

innovations. The Generalized_State_Space_Form di¤ers from the

State_Space_Form above through the presence of the (usually) singular

leading matrix A0.

For this model form the following policies are supported:

� Discretion (st = xt)

� Commitment
�
st =

�
xt
�t

��

� Quasi-commitment
�
st =

�
xt
�t

��

� Timeless-perspective commitment

0@st =
24 xt
xt�1
ut�1

351A
For each policy the solution returned is of the form

st+1 = Pst +K�t+1;

zt = Hst;

ut = Fst:

with this information summarized in the solution type, State_Space_Soln.

To solve a model for each of the policies above we would use code like

the following

obj = State_Space_Objective(beta,q,u,r)

model = Generalized_State_Space_Form(nx,ny,a0,a,b,c,sigma)

10



tol = 1e-10

maxiters = 100

commit_prob = 0.75

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

soln_quasi = solve_quasi(model,obj,commit_prob,tol,maxiters)

soln_timeless = solve_timeless(model,obj,tol,maxiters)

4.3 Structural form

The LQ optimal policy problem in Structural_Form is described by the

quadratic objective function

Loss = E

" 1X
t=0

�t
�
y
0
tQyt + u

0
tRut

�#
;

and the linear constraints

A0yt = A1yt�1 +A2Etyt+1 +A3ut +A5�t;

where yt contains n variables, ut contains np policy instruments, and �t

contains ns stochastic innovarions.

For this model form the following policies are supported:

� Discretion (st�1 = yt�1)

� Commitment
�
st�1 =

�
yt�1
�t�1

��
For each policy the returned solution is of the form

st = Pst�1 +K�t;

ut = Fst�1:

with this information contained in the solution type, Structural_Soln.

11



To solve a model for each of the policies above we would use code like

the following

obj = Structural_Objective(beta,q,r)

model = Structural_Form(a0,a1,a2,a3,a5,sigma)

tol = 1e-10

maxiters = 100

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

4.4 Generalized structural form

The LQ optimal policy problem in Generalized_Structural_Form is

described by the quadratic objective function

Loss = E

" 1X
t=0

�t
�
y
0
tQyt + u

0
tRut

�#
;

and the linear constraints

A0yt = A1yt�1 +A2Etyt+1 +A3ut +A4Etut+1 +A5�t;

where yt contains n variables, ut contains np policy instruments, and �t

contains ns stochastic innovarions.

For this model form the following policies are supported:

� Discretion (st�1 = yt�1)

� Commitment
�
st�1 =

�
yt�1
�t�1

��
For each policy the returned solution is of the form

st = Pst�1 +K�t;

ut = Fst�1:

12



with this information contained in the solution type, Structural_Soln.

To solve a model for each of the policies above we would use code like

the following

obj = Structural_Objective(beta,q,r)

model = Generalized_Structural_Form(a0,a1,a2,a3,a4,a5,sigma)

tol = 1e-10

maxiters = 100

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

References
[1] Binder, M., and H. Pesaran, (1995), �Multivariate Rational Expecta-

tions Models and Macroeconomic Modeling: A Review and Some New
Results,� in: Pesaran, H., M. Wickens, (Eds.), Handbook of Applied
Econometrics, Basil Blackwell, Oxford, pp.139�187.

[2] Blanchard, O., and C. Kahn, (1980), �The Solution to Linear Di¤erence
Models under Rational Expectations,�Econometrica, 48, pp.1305�1311.

[3] Gomme, P., and P. Klein, (2011), �Second-Order Approximation of Dy-
namic Models Without the Use of Tensors,� Journal of Economic Dy-
namics and Control, 35, pp.604�615.

[4] Klein, P., (2000), �Using the Generalized Schur Form to Solve a Multi-
variate Linear Rational Expectations Model,�Journal of Economic Dy-
namics and Control, 24, pp.1405�1423.

[5] Lombardo, G., and A. Sutherland, (2007), �Computing Second-Order-
Accurate Solutions for Rational Expectations models Using Linear Solu-
tion Methods,�Journal of Economic Dynamics and Control, 31, pp.515�
530.

[6] Sims, C., (2001), �Solving Linear Rational Expectations Models,�Com-
putational Economics, 20, pp.1�20.

13


